
CanSat	Feather	M0
Guide

A	comprehensive	technical	guide	to	assemble,	use	and	get	the	best	of	the
Feather	M0	Express	for	CanSat	launch.

(version	0.3)

Traduit	par	MicroControleur	Hobby	(shop.mchobby.be)
Compilé	depuis	la	traduction	maintenue	sur	https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BELGIUM
Les	hyperliens	sont	disponibles	sur	la	version	en	ligne	du	document.
Translated	by	MicroControleur	Hobby	(shop.mchobby.be)
Compiled	from	online	translation	available	at	https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BELGIUM
Hyperlinks	are	available	on	the	online	version	of	this	document.

http://shop.mchobby.be/
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BELGIUM
http://shop.mchobby.be/
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BELGIUM

CANSAT	Wiki	-	welcome

Sommaire
1	What	is	CanSat?
2	How	to	subscribe	the	contest?
3	About	this	Wiki
4	Getting	Started
5	Test	the	devices
6	Mission	1
7	Resources

What	is	CanSat?
CanSat	Contest	simulates	the	fly	of	miniaturized	satellites	named	CanSat	(Can	Satellite).

The	CanSat	is	an	autonomous	devices	enclosed	within	the	volume	of	a	soda	can.

The	volume	of	a	CanSat	has	the	following	characteristics:	66mm	diameter,	115mm	height
for	a	mass	of	350gr.

As	the	CanSat	have	small	volume	and	are	very	affordable,	the	CanSat	contest	is	great	for
learning	more	about	space	technologies.

The	CanSats	are	deployed	from	a	rocket	(the	launch	vehicle)	at	a	height	of	about	3000m
depending	on	the	competition	(see	all	the	details	in	the	contest	rules).

The	CanSats	are	not	orbited	and	are	always	deployed	in	the	athmosphere.	So	they	always
comes	back	to	the	earth.

The	CanSat	volume	cannot	increase	until	the	CanSat	is	deployed	out	of	the	rocket.

This	means	that	external	antenna	is	allowed	only	after	the	CanSat	left	the	rocket.

A	parachute	(that	increase	the	volume	of	the	CanSat)	is	usually	used	to	limit	damages.	The
aim	is	to	reuse	the	CanSat	for	several	missions.

In	Europe,	the	CanSat	contest	includes	two	missions:

Mission	1:	mesure	pressure	and	temperature	and	transmit	data	in	real	time.
Mission	2:	free	choice	mission	(using	Intertial	Measurement	Unit,	GPS,	MPX	differential	pressure	sensor,	etc).

How	to	subscribe	the	contest?
In	Europe,	the	CanSat	competition	is	promoted	by	the	ESA	(source	https://en.wikipedia.org/wiki/CanSat#_Europe).

For	Belgium:	the	CanSat	Belgium	competition	is	promoted	by	InnovIris	(CanSat	Belgium	NL
http://www.innoviris.be/fr/promotion/cansat-belgium	,	CanSat	Belgium	FR	http://www.innoviris.be/nl/promotie/cansat-belgium	,	CANSAT	Belgium
FaceBook	https://www.facebook.com/CanSat.Belgium?fref=ts).
Innoviris	is	the	Brussels	Institute	for	the	encouragement	of	scientific	research	and	innovation.

For	Luxembourg:	the	CanSat	Luxembourg	competition	is	promoted	by	Esero	Luxembourg	(www.cansat.lu)
https://www.cansat.lu	.

About	this	Wiki
MC	Hobby	does	promote,	mainly	in	French,	the	Arduino	Open-Source	plateform,	MicroPython,	Raspberry-Pi,	coding,
electronics	to	made	knowledge	freely	available	de	the	mass.

This	CanSat	Belgium	Wiki	is	one	of	the	MC	Hobby	https://shop.mchobby.be	documentation	project	https://wiki.mchobby.be	partially
funded	by	Innoviris.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BELGIUM.jpg
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-THECAN.jpg
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#What_is_CanSat.3F
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#How_to_subscribe_the_contest.3F
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_this_Wiki
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Getting_Started
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Test_the_devices
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Mission_1
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Resources
https://en.wikipedia.org/wiki/CanSat#_Europe
http://www.innoviris.be/fr/promotion/cansat-belgium
http://www.innoviris.be/nl/promotie/cansat-belgium
https://www.facebook.com/CanSat.Belgium?fref=ts
https://www.cansat.lu/
https://shop.mchobby.be/
https://wiki.mchobby.be/

Hardware
discovery

Discover	the	various	items
included	within	the	kit.

Cliquez	ici

Arduino	IDE

Prepare	your	Arduino	IDE
environment

Cliquez	ici

Feather	User
Guide

The	Feather	M0	Express
user	guide	for	Arduino	IDE.

Cliquez	ici

Forcing	Flash
Mode

Useful	tip	to	know.

Cliquez	ici

M0	Sketch	tips

Tips	and	tricks	to	write
sketch	for	the	M0.

Cliquez	ici

Using	SPI	Flash

Programing	advice	to	work
with	integrated	SPI	Flash.

Cliquez	ici

BMP280	sensor

Test	the	BMP280	pressure
and	elevation	sensor.

TMP36	sensor

Test	the	TMP36	analog
temperature	sensor

Cliquez	ici

RFM69HCW
radio

User	guide	for	the
RFM69HCW	radio	module.

RFM69HCW
Testing

Testing	the	communication
with	RFM69HCW	and
sending	data	through	the

Getting	Started

	

The	Feather	M0	Express	can	also	been	used	used	with	CircuitPython,	a	Flavor	of	MicroPython.	It's	means	that	you
can	also	write	Python	script	on	this	microcontroler.	This	point	is	not	covered	in	this	tutorial	series.

You	may	learn	more	from	Adafruit	Industries	https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-
is-circuitpython	(or	this	translation).

Test	the	devices

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-CONTENT
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-CONTENT
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-CONTENT
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ARDUINO
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ARDUINO
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ARDUINO
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-USER-GUIDE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-USER-GUIDE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-USER-GUIDE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-FORCING-FLASH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-FORCING-FLASH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-FORCING-FLASH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SKETCH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SKETCH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SKETCH
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SPI
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SPI
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-SPI
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BMP280
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BMP280
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-TMP36
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-TMP36
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-TMP36
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW-TEST
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW-TEST
https://wiki.mchobby.be/index.php?title=Fichier:ARDX-Intro-MCHobby.jpg
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-is-circuitpython
https://wiki.mchobby.be/index.php?title=FEATHER-M0-EXPRESS

Cliquez	ici Cliquez	ici radio	module.

Cliquez	ici

Radio	Antenna

A	well	designed	Antenna
can	increase	the
communication	distance.

Cliquez	ici

NeoPixel

Using	the	NeoPixel	LED
available	on	the	board.

Cliquez	ici

Frequency	Plan

Be	courteous,	share	the
radio	bandwidth.

Cliquez	ici

Mission	1:
Emitter

Wiring	sensors,	capturing
datas	and	sending	over
radio.

Cliquez	ici

Mission	1:
Receiver

Receiving	the	transmitted
data.

Cliquez	ici

Mission	1:	Going
autonomous

Receiving	the	transmitted
data.

Cliquez	ici

CanSat	3D Radio	Antenna Parachute Shopping

	

Mission	1
The	team	must	build	a	CanSat	and	program	it	to	accomplish	the	primary	(madatory)	mission,	as	follows:

After	release	and	during	descent,

the	CanSat	shall	measure	several	parameters,
the	data	shoudld	be	transmitted	as	telemetry	information	to	the	ground	station.
the	telemetry	should,	at	least,	be	send	once	every	second.

The	following	informations	should	be	captured:

Air	temperature
Air	pressure

It	must	be	possible	for	the	team	to	analyse	the	data	obtained	(for	example,	make	a	calculation	of	altitude)	and	display	it
in	graphs	(for	example,	altitude	vs.	time	and	temperature	vs.	altitude).

So,	don't	forget	to	also	capture	the	time	for	each	data	collected.	This	information	is	as	critical	than	pressure	and
temperature

	

Resources

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-BMP280
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-RFM69HCW-TEST
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-NEOPIXEL
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-NEOPIXEL
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-NEOPIXEL
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FREQUENCY-PLAN
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FREQUENCY-PLAN
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FREQUENCY-PLAN
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-CAPTURE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-CAPTURE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-CAPTURE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-RECEIVE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-RECEIVE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-RECEIVE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-AUTONOMOUS
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-AUTONOMOUS
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-MISSION1-AUTONOMOUS
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-3D
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-3D
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PARACHUTE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PARACHUTE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-SHOPPING

CanSat	3D	models	to	print
your	own	one

Cliquez	ici

A	well	designed	Antenna
can	increase	the
communication	distance.

Cliquez	ici

Some	reference	to	design
the	parachute

Cliquez	ici

Need	to	refill	some	parts?

Cliquez	ici

	

Optional:	Adding	a	GPS	module	to	transmit	the	CanSat	position	with	the	telemetry	data	would	ease	to	positioning	when
back	on	the	earth.

Other	resources:

CanSat	Europe	https://en.wikipedia.org/wiki/CanSat#_Europe	on	WikiPedia	-	Lot	of	informations
This	wiki	as	PDF	https://df.mchobby.be/wiki-export/Eng-Cansat/Eng-Cansat.pdf	(pdf)
Install	&	configure	ARDUINO	IDE	for	Feather	M0	Express	https://df.mchobby.be/wiki-export/Eng-Cansat/ENG-CANSAT-ARDUINO-IDE.pdf
(pdf)
CanSat	Kit	Presentation	(Belgium)	https://df.mchobby.be/wiki-export/Eng-Cansat/Cansat-kit-presentation.pdf	(pdf)
CanSat	Kit	Presentation	(Luxembourg)	https://df.mchobby.be/wiki-export/Eng-Cansat/Cansat-kit-presentation-Lux.pdf	(pdf)
Cansat	2022	Luxembourg	-	Kit	Report	https://df.mchobby.be/wiki-export/Eng-Cansat/Esero_SnT_McHobby_CanSat.pdf	(pdf)

https://wiki.mchobby.be/index.php?title=ENG-CANSAT-3D
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-PARACHUTE
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-SHOPPING
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-SHOPPING
https://en.wikipedia.org/wiki/CanSat#_Europe
https://df.mchobby.be/wiki-export/Eng-Cansat/Eng-Cansat.pdf
https://df.mchobby.be/wiki-export/Eng-Cansat/ENG-CANSAT-ARDUINO-IDE.pdf
https://df.mchobby.be/wiki-export/Eng-Cansat/Cansat-kit-presentation.pdf
https://df.mchobby.be/wiki-export/Eng-Cansat/Cansat-kit-presentation-Lux.pdf
https://df.mchobby.be/wiki-export/Eng-Cansat/Esero_SnT_McHobby_CanSat.pdf

Hardware	Discovery

Sommaire
1	Feather	M0	Express	in	few	words

1.1	Feather	Board	content
1.2	Feather	board	items

2	Kit	content

Feather	M0	Express	in	few	words
The	CanSat	kit	it	build	around	the	Adafruit	Industries	Feather	M0	Express	plateform.

Feather	is	a	new	emerging	standard	-Arduino	compatible	plaform-	for	embedded	projet.
Feather	is	small,	light	and	already	brings	lot	useful	features.
Feather	M0	is	compatible	with	Arduino	M0,	so	compatible	with	Arduino	IDE.
Feather	M0	Express	also	embed	FLASH	memory	that	can	act	like	SD	Card	(Arduino	IDE)	or	USB	Stick
(CircuitPython)

As	Feather	M0	is	compatible	Arduino	IDE,	everything	learned	for	Arduino	Uno	can	be	applied	to	Feather	M0.	Just
care	about	voltage,	the	UNO	is	5V	Logic	and	the	Feather	3.3V	logic.

Feather	Board	content

Feather	board	items

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_M0_Express_in_few_words
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_Board_content
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_board_items
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Kit_content
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-CONTENT-01.jpg

See	the	Feather	User	Guide	section	for	more	information.

Kit	content
	 Description Quantité

Feather	M0	Express New	Arduino	M0	compatible	on	a
standard	platform	for	embedded
project.	Also	compatible	with
CircuitPython.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=1119

1

USB	A/microB	1m	cable Can	be	used	to	plug	your	feather
on	a	computer	to	program	it	or	to
reload	the	Lipo.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=145

1

Half	Size	Breadboard Solderless	breadboard	are	used
for	fast	prototyping.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=53

1

Multi-functional	breadboard
wires

Set	of	wires	with	plug	that	can	be
modified	from	female	to	male.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=82

1

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-CONTENT-00.png
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-FEATHER-M0-USER-GUIDE
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS.png
https://shop.mchobby.be/product.php?id_product=1119
https://wiki.mchobby.be/index.php?title=Fichier:CABLE-USB-MICRO.png
https://shop.mchobby.be/product.php?id_product=145
https://wiki.mchobby.be/index.php?title=Fichier:BB-DEMI.jpg
https://shop.mchobby.be/product.php?id_product=53
https://shop.mchobby.be/product.php?id_product=82

Feather	Stacking	Headers Plug	your	feather	or	prototype
wing	on	breadboard	and	still
having	a	female	connector	under
the	hand.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=832

1

Feather	Prototyping	Wing Prototyping	board	for	feather
platform.	Create	your	own
extension	board	(wing)	by
soldering	connectors	and
components.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=861

1

Lithium	Polymer	Battery Transform	the	Feather	into	an
autonomous	plateform	with	this
800mAh	Lipo.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=1302

1

BMP280	–	Barometric	pressure
sensor

Easily	evaluate	pressure,	altitude
and	temperature.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=1118

1

TMP36	–	analog	temperature
sensor

Transform	the	sensor	voltage	read
on	analog	input	into	an	easy-to-
read	temperature.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=82

1

RFM69HCW	Transceiver	Radio Transport	data	over	long	distance
with	packet	radio.	One	breakout
act	as	emitter,	the	second	one	as
receiver.
disponible	ici	chez	MCHobby
https://shop.mchobby.be/product.php?id_product=1390

2

https://wiki.mchobby.be/index.php?title=Fichier:FILS-BB-FFASSOR-v2.png
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-STACK-HEAD.png
https://shop.mchobby.be/product.php?id_product=832
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-PROTO-WING.png
https://shop.mchobby.be/product.php?id_product=861
https://wiki.mchobby.be/index.php?title=Fichier:ACC-LIPO-800mAh.png
https://shop.mchobby.be/product.php?id_product=1302
https://wiki.mchobby.be/index.php?title=Fichier:BMP280.jpg
https://shop.mchobby.be/product.php?id_product=1118
https://wiki.mchobby.be/index.php?title=Fichier:TMP36.jpg
https://shop.mchobby.be/product.php?id_product=82
https://wiki.mchobby.be/index.php?title=Fichier:RFM69HCW-433Mhz-BRK.png
https://shop.mchobby.be/product.php?id_product=1390

Arduino	IDE

Sommaire
1	Getting	prepared	for	a	Training
2	Install	Arduino	IDE	(the	.CC	version)
3	Register	Additional	Boards
4	Install	the	Feather	M0	board

4.1	Install	the	SAMD	boards
4.2	Install	the	ADAFRUIT	SAMD	board
4.3	Check	installed	boards

5	Test	with	BLINK
6	Install	the	Windows	Driver	(Win	7	only)

Getting	prepared	for	a	Training
Installing	the	Arduino	IDE	environment	+	dependencies	would	involve	more	than	220	Mb	download	(100	Mb	for
Arduino,	120	Mb	for	Arduino	SAMD	support,	20	Mb	for	Adafruit	SAMD	support).

It	is	important	to	get	prepared	before	the	training.	It	is	not	possible	to	rely	on	the	guest	network	to	download	such
amount	of	data	for	each	of	the	participant.

So,	if	you	intend	to	follow	a	training,	get	prepared	by	downloading	and	installing	the	complete	environment	as
suggested	here	follow.

Install	Arduino	IDE	(the	.CC	version)
As	first	operation,	you	have	to	install	the	Arduino	IDE	from	Arduino.CC	(not	Arduino.ORG).	To	follow	this	guide,	you
must	have	the	version	1.8	or	higher.

Arduino	IDE	Download
http://www.arduino.cc/en/Main/Software

Register	Additional	Boards
Once	the	last	version	of	Arduino	IDE	installed,	open	the	IDE	and	select	the	Preference	menu	(available	in	the	File
menu	for	Windows	and	Linux	--or--	under	the	Arduino	menu	for	OS	X).

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

You	should	see	a	dialog	box	like	the	following.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Getting_prepared_for_a_Training
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_Arduino_IDE_.28the_.CC_version.29
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Register_Additional_Boards
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_the_Feather_M0_board
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_the_SAMD_boards
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_the_ADAFRUIT_SAMD_board
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Check_installed_boards
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Test_with_BLINK
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_the_Windows_Driver_.28Win_7_only.29
http://www.arduino.cc/en/Main/Software
http://www.arduino.cc/en/Main/Software
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-01.png
http://www.adafruit.com/

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

We	will	add	an	URL	in	the	new	option	Additional	Boards	Manager	URLs	(the	URL	to	handle	additional	boards).

This	field	contains	an	URL	list	(coma	separated).	Each	new	URL	can	only	be	added	once	in	this	list.

This	new	Adafruit's	board	and	updates	of	existing	boards	will	be	collected	by	the	"Board	Manager"	(each	time	you	open
it).	The	URLs	point	to	the	index	files	used	by	the	board	manager	to	build	the	list	of	the	board	available	to	download.

If	you	want	to	know	the	Arduino	IDE's	supported	boards	then	browse	the	list	of	URLs	of	managed	boards
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls	(Arduino	Wiki	page).

For	this	Feather	M0	Express,	we	only	need	to	add	a	single	URL.	However,	it	is	possible	to	add	several	URLs	separated
by	a	coma.

Copy/paste	the	link	here	below	in	the	field	Additional	Boards	Manager	URLs	(of	the	Arduino	IDE	"preference"
window).

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Here	follows	a	small	description	of	the	boards	available	with	the	URLs:

Adafruit	AVR	Boards	-	support	for	Flora,	Gemma,	Feather	32u4,	Trinket	and	Trinket	Pro.
Adafruit	SAMD	Boards	-	support	for	the	Feather	M0,	Metro	M0,	Circuit	Playground	Express,	Gemma	M0	and
Trinket	M0
Arduino	Leonardo	&	Micro	MIDI-USB	-	Add	the	MIDI	over	USB	support	for	Flora,	Feather	32u4,	Micro	&

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-02.png
http://www.adafruit.com/
https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-03.png
http://www.adafruit.com/

Leonardo	(use	the	projet	arcore	https://github.com/rkistner/arcore).

Once	the	"OK"	button	pressed,	the	new	preferences	are	saved.

We	can	now	install	the	needed	board	into	the	Board	Manager.

Install	the	Feather	M0	board
Open	the	Boards	Manager	available	via	the	menu	Tools->Board	.

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Once	the	Boards	Manager	opened,	select	the	Contributed	type.	Once	done,	you	will	be	able	to	install	the	board	attached
to	package_adafruit_index.json	URL.

Install	the	SAMD	boards

Now,	we	will	install	the	Arduino	SAMD	board	version	1.6.15	or	higher.

You	can	type	in	the	Arduino	SAMD	in	the	search	box	to	quickly	find	the	package,	then	press	the	Install	button.

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Install	the	ADAFRUIT	SAMD	board

After	the	SAMD	board,	it's	time	to	install	the	"Adafruit	SAMD"	package	to	support	the	Adafruit	boards.

You	can	type	in	the	Adafruit	SAMD	in	the	search	field	to	find	the	package.	Once	located,	press	the	Install	button.

https://github.com/rkistner/arcore
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-01.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-02.png
http://www.adafruit.com/

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

We	strongly	recommand	to	restart	the	Arduino	IDE	(it	is	not	required	but	it	is	better	to	do	it	anyway).

Check	installed	boards

Once	the	Arduino	IDE	restarted	to	be	sure	that	boards	are	properly	installed,	you	should	be	able	to	select	the	new
boards	in	the	interfaces	(and	to	upload	code)	via	the	menu	Tools	->	Board.

Select	the	board	for	the	kit	among	those	now	available:

Feather	M0	(for	the	Feather	M0	boards	other	than	Feather	M0	Express)
Feather	M0	Express
Metro	M0	Express
Circuit	Playground	Express
Gemma	M0
Trinket	M0

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Test	with	BLINK

If	you	are	using	WINDOWS	then	you	should	have	a	look	to	the	"Windows
Driver"	section	here	below!

Now,	we	can	upload	your	first	sketch	to	the	board	(the	"blink"	sketch)!

Wire	your	board	to	the	computer	and	wait	for	the	operating	system	to	identify	it	(this	may	take	few	seconds).	Once
identified,	the	Serial	port/COM	is	available	in	the	list	of	serial	port	available.

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-03.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-04.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

It	is	now	time	to	upload	the	Blink	sketch

void	setup()	{
		//	init	the	digital	pin	#13	as	OUTPUT
		pinMode(13,	OUTPUT);
}

//	the	"loop"	function	is	executed	again	and	again	(in	a	infinite	loop)
void	loop()	{
		digitalWrite(13,	HIGH);			//	Light	up	the	LED	(HIGH	level	=	3.3v)
		delay(1000);														//	Wait	1	second
		digitalWrite(13,	LOW);				//	Switch	off	the	LED	(LOW	level	=	0V)
		delay(1000);														//	Wait	1	second
}

Then	click	on	the	"upload"	button!	You	should	be	able	to	see	the	board	LED	blinking.	You	can	tune	the	blink	speed	by
updating	the	value	for	the	delay()	function.

If	you	get	upload	issue	then	you	should	check	if	you	selected	the	proper	board	type.

Install	the	Windows	Driver	(Win	7	only)
You	will	certainly	have	to	install	Windows	Driver	before	plugin	the	board	on	the	computer.

You	can	download	the	Windows	Driver	from	the	Adafruit	Industries	server	:

Download	the	Adafruit	Drivers	v2.0.0.0
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.0.0.0/adafruit_drivers_2.0.0.0.exe

Download	and	start	the	setup	software.

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Execute	the	setup	software!	It	will	be	necessary	to	review	the	licensing	instruction	as	it	contains	the	SiLabs	setup	and
FTDI	driver.

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-09.png
http://www.adafruit.com/
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.0.0.0/adafruit_drivers_2.0.0.0.exe
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/download/2.0.0.0/adafruit_drivers_2.0.0.0.exe
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-05.png
http://www.adafruit.com/

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Select	the	driver	you	want	to	install,	the	default	selection	would	be	perfect	for	the	Adafruit	boards!

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Push	the	'Install	button	to	proceed.

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-06.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-07.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Utiliser-08.png
http://www.adafruit.com/

Feather	User	Guide

Sommaire
1	Feather	M0	Express
2	Feather	M0	Express	PINOUT

2.1	Introduction
2.2	Power	Pin
2.3	Logical	pins
2.4	SPI	Flash	and	NeoPixel

2.4.1	NeoPixel
2.4.2	The	SPI	Flash	memory

2.5	Other	pins!
2.6	Debug	Interface

Feather	M0	Express
The	Feather	M0	use	the	ATSAMD21G18	ARM	Cortex	M0+	processor	with	3.3V	logic	and	48	MHz.	This	chip	embed
256K	of	FLASH	(8x	more	than	the	Atmega328/Uno)	and	has	32K	RAM	(16x	more	than	UNO)!

As	Feather	M0	is	compatible	Arduino	IDE,	everything	learned	for	Arduino	Uno	can	be	applied	to	Feather	M0.	Just
care	about	voltage,	the	UNO	is	5V	Logic	and	the	Feather	3.3V	logic.

Feather	M0	Features
20	GPIOs
6	Analog	inputs	12bits
value	from	0	to	4095.
1	Analog	output	10	bits
value	from	0	to	1023.
PWM	on	all	pins
Hardware	I2C	et	SPI	buses
UART

	

Feather	are:
*	Small	(5c2xm)
*	Light	(4.7Gr)
*	Powerful
*	Versatile
*	Polyvalent
*	Available	with
complete	ecosystem	https://shop.mchobby.be/category.php?id_category=87

This	ATSAMD21G18	has	USB	built-in	which	offers	USB-to-Serial	and	debug	feature	(so	no	need	for	FTDI-like	chip).

https://shop.mchobby.be/category.php?id_category=87
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_M0_Express
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_M0_Express_PINOUT
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Power_Pin
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Logical_pins
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#SPI_Flash_and_NeoPixel
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#NeoPixel
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_SPI_Flash_memory
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Other_pins.21
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Debug_Interface
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-CONTENT-00.png

The	feather	has	the	following	specs:

Size:	51mm	x	23mm	x	8mm
Weight:	5	grams
ATSAMD21G18	@	48MHz
3.3V	logic/power
256KB	of	FLASH
32KB	of	RAM
No	EEPROM
RTC	&	Clock	based	on	32.768	KHz	crystal
3.3V	regulator	(500mA	peak	current)	with	Power/enable	pin
USB	native	support	(has	USB	bootloader)
20	GPIO	pins	(PWM	on	all	pins)
Hardware	Serial	+	Hardware	I2C	+	Hardware	SPI	support
6	x	12-bit	analog	inputs	(from	0	to	4095)
1	x	DAC	10-bit	analog	ouput	(from	0	to	1024)
Lipo	Charger	included:	100mA	charging	with	status	LED
Red	LED	attached	on	pin	#13	(like	Arduino	UNO)
Reset	button
Mini	NeoPixel
2	MB	SPI	additional	Flash	storage.

The	Feather	M0	Express	can	be	be	programmed	with	Arduino	IDE	-OR-	with	CircuitPython	(a	flavor	of
MicroPython).	This	tutorial	focus	on	Arduino	IDE	development.	Check	the	Adafruit	Tutorial	if	you	are	interested	in
CircuitPython	Programming	https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-is-circuitpython	.

About	the	additionnal	Flash:
The	SPI	Flash	storage	act	like	a	tiny	hard	drive.

Under	CircuitPython,	the	2	MB	Flash	is	used	to	the	Python	scripts,	libraries	and	other	files.
With	Arduino,	the	2	MB	Flash	is	used	to	read/write	files	to	it	(like	a	SD	card).	Adafruit	has	helper	program	to
access	those	files	over	USB.

The	UF2	bootloader:
The	Feather	M0	is	pre-loaded	with	an	UF2	bootloader	which	looks	like	a	USB	Flash	Drive.	Simply	drag	an	UF2
firmware	on	the	USB	Flash	drive	to	completely	reprogram	de	board	firmware	(No	special	tools,	No	special	drivers
needed)!	The	UF2	bootloader	can	be	used	to	load	up	CircuitPython,	MakeCode	PXT	file	or	Arduino	IDE	(bossa-
compatible).

Feather	M0	Express	PINOUT
Introduction

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com	

Click	to	enlarge

(Please	note	that	AREF	is	PA03	(and	not	PA02)

https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-is-circuitpython
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-01.png
http://www.adafruit.com/

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

The	Feather	M0	benefits	from	the	Cortex	M0	microcontroler	hardware.	If	has	many	buses	and	many	pins.	Let's	review
them	togheter!

Power	Pin

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

GND		:	is	the	common	ground.	The	0v	reference	voltage	for	all	the	logic	and	power	supplies.
BAT	:	positive	pin	from	the	JST	connector	(the	optional	Lipo).
USB		:	positive	pin	from	the	USB	connector.	Will	allow	you	to	detect	if	the	board	is	connected	on	USB.
EN	:	Enable	pin	of	the	3.3V	regulator.	This	pin	has	a	Pull-Up	résistor.	Connect	the	EN	pin	to	the	ground	will
shutdown	the	3.3V	regulator.
3V	:	Output	of	the	3.3V	regulator	(500mA	peak)

Logical	pins

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

This	concerns	all	the	I/O	pins	on	the	microcontroler.

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-02.jpg
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-03.jpg
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-04.jpg
http://www.adafruit.com/

All	PINS	are	3.3V	Logic

Almost	all	pins	can	generate	PWM	signal	(also	called	"analog	output"	on	Arduino	UNO	board).
All	pins	can	be	used	for	Interrupt	Request	(IRQ).

The	following	pins	have	specific	features:

#0	/	RX	-	GPIO	#0,	also	receiving	pin	of	the	Serial1	UART	(hardware	serial	port,	input).	Also	an	analog	input.
#1	/	TX	-	GPIO	#1,	also	transmitting	pins	of	the	Serial1	UART	(hardware	serial	port,	output).	Also	an	analog
input.
SDA	-	Data	pin	for	the	I2C	bus.	There	is	no	pull-up	resistor	on	that	pin,	so	you	need	to	add	a	2.2K-10K	pull-up
when	used	for	I2C	bus.
SCL	-	Clock	pin	for	the	I2C	bus.	There	is	no	pull-up	resistor	on	that	pin,	so	you	need	to	add	a	2.2K-10K	pull-up
when	used	for	I2C	bus.
#5	-	GPIO	#5
#6	-	GPIO	#6
#9	-	GPIO	#9,	also	analog	input	A7.	This	analog	input	is	wired	on	a	divider	resistor	bridge	to	read	the	Lipoly
battery	voltage.	As	a	consequence,	the	voltage	of	that	pin	is	fixed	to	a	voltage	around	~2V.
#10	-	GPIO	#10
#11	-	GPIO	#11
#12	-	GPIO	#12
#13	-	GPIO	#13,	also	connected	to	the	red	LED	near	if	the	microUSB	située	près	du	connecteur	micro	USB.
A0	-	Analog	input	A0	and	also	a	real	Analog	output	since	the	DAC	is	wired	on	this	pin	(DAC	=	Digital	to	Analog
Converter).	The	output	voltage	can	be	set	with	a	value	between	0	and	3.3V.	Unlike	the	PWM	output,	this	pin	is	a
real	analog	output.	So	you	can	experiment	with	signal	generator.
A1	to	A5	-	each	pin	is	an	Analog	input	and	also	a	Digital	Input/Output.
It	is	a	12-bit	analog	inputs	(so	with	values	from	0	to	4095)
SCK/MOSI/MISO	-	those	are	the	pins	for	the	hardware	SPI	bus.	The	pin	can	also	been	used	to	as	Digital
Input/Output.

About	buses:

The	SPI	bus	can	reach	really	high	speed	so	it	is	a	good	idea	to	preserve	it,	mostly	useful	with	TFT	display	requiring
high	throughput	to	display	the	content.
The	I2C	bus	can	be	shared	among	several	devices	(usually	sensors).	So	it	is	also	a	good	idea	to	preserve	the	SDA	&
SCL	pins.

SPI	Flash	and	NeoPixel

The	"Express"	product	line	is	designed	to	also	run	CircuitPython.	To	ease	the	prototyping,	Adafruit	added	2	additional
items	on	the	Feather	M0:

a	mini	NeoPixel	LED	(NeoPixel	are	Digital	RGB	LEDs	that	can	be	controled	with	only	one	data	pin)
a	2	MB	additional	memory	(Flash	memory	on	SPI	bus.

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

The	NeoPixel	LED	is	wired	on	the	#8	(in	Arduino),	so	you	can	use	the	library	https://learn.adafruit.com/adafruit-neopixel-
uberguide/arduino-library-use%7CNeoPixel	by	configuring	a	ribbon	of	only	1	pixel.	The	NeoPixel	is	powered	with	3.3V	but	this
doesn't	impact	the	color	or	the	brightness.

NeoPixel

The	NeoPixel	is	also	used	by	the	bootloader	to	inform	the	user	about	the	bootloader	state:

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-05.jpg
http://www.adafruit.com/
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use%7CNeoPixel

Green	:	The	device	has	been	proprely	enumerated	over	the	USB	interface.
Red	:	error	with	the	USB.

Note:	In	CircuitPython,	the	LED	is	used	to	mention	the	running	status.

The	SPI	Flash	memory

The	Flash	memory	is	wired	on	4	reserved	pins.	Those	pins	are	not	made	available	as	GPIO,	so	no	worries	about	collision
risk	when	using	device	on	the	Feather	SPI	bus.	The	SPI	Flash	memory	is	wired	on	a	different	SPI	bus...	so	no	worries.

Under	Arduino

The	Flash	pins	are:

SCK	=	pin	#3,
MISO	=	pin	#2,
MOSI	=	pin	#4
CS	=	pin	#38.

On	the	Feather	M0	Express	you	will	be	able	to	access	this	SPI	bus	(and	the	Flash)	under	the	name	SPI1.	So	the
Flash	device	is	totally	distinct	from	the	Feather	GPIO's.

When	used	with	Arduino,	this	SPI	Flash	memory	would	allow	read/write	operations.

Under	CircuitPython	(MicroPython	Flavor)

Under	CircuitPython,	the	SPI	Flash	memory	is	a	native	storage	for	the	Python	interpreter.	The	Flash	memory	does
appears	as	read	only	for	the	user	code.

Other	pins!

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

RST	-	"Reset"	pin.	Wire	this	pin	to	the	ground	(GND)	to	reset	the	microcontroler	and	start	the	bootloader.
ARef	-	"Analog	Reference"	pin	used	when	the	microcontroler	reads	analog	voltage.	As	default	behavior,	the
reference	voltage	is	identical	to	the	logic	level	(so	3.3V).	However,	you	can	use	a	another	analog	reference	voltage
(eg:	1.5V)	and	inform	you	software	to	use	the	external	reference	AREF	EXTERNE.	In	such	case,	the	12bits	analog
reads	(value	from	0	to	4095)	would	cover	a	voltage	range	from	0	to	1.5V,	so	a	resolution	of	1.5/4095=0.366mV.

The	reference	voltage	can	never	exceed	3.3v.	The	analogic	pin	voltage	can	never	exceed	the	ARef
reference	voltage!

Debug	Interface

For	advanced	users.

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-06.jpg
http://www.adafruit.com/

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

SWCLK	et	SWDIO	-	those	contact	points,	visible	under	the	board,	are	used	to	program	the	microcontroler.	You
can	also	use	thoses	contact	to	connect	the	SWD	debugger.

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS-Brochage-07.jpg
http://www.adafruit.com/

Forcing	Flash	Mode
Issue	Description
Sometime,	it	happens	that	compilation	phase	get	complete	successfully	but	the	binary	can't	get	uploaded	to	the	board.

Reason
The	M0	board	Flash	Mode	does	not	get	activated	from	the	Arduino	IDE	environment.

Workaround
Activate	the	Flash	Mode	before	compiling	&	uploading	your	sketch.

To	do	so,	PRESS	TWICE	the	reset	button.

Once	done,	the	Flash	Mode	is	activated	and	the	board	will	show	itself	as	an	USB	Stick	named	"FEATHERBOOT"
(Windows	and	other	operating	system	does	show	a	file	navigation	window).

Then,	press	the	Upload	button	into	Arduino	IDE	environment.

This	time,	the	sketch	will	be	copied	to	the	board...	and	Feather	M0	properly	reset.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-FEATHER-M0-FORCING-FLASH.jpg
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-FEATHER-M0-FORCING-FLASH-01.png

When	Writing	Sketch

Sommaire
1	Forewords
2	Analog	reference
3	Pins	and	pull-up
4	Serial	ou	SerialUSB
5	AnalogWrite	/	PWM	on	Feather	M0
6	analogWrite()	and	range	of	PWM	value
7	Missing	Header	file
8	Start	the	Bootloader
9	Memory	alignment
10	Floating	point	conversion	(dtostrf)
11	How	many	RAM	available	?
12	Store	data	in	the	microcontroler	Flash

Forewords
The	ATSAMD21	is	still	a	newcomer	in	the	Arduino-compatible	world.	Most	of	sketch	and	libraries	would	work	on
ATSAMD21	but	somes	things	have	to	be	pointed	out!

Le	notes	here	under	would	apply	to	the	M0	boards.

Analog	reference
If	you	want	to	use	the	ARef	for	a	voltage	reference	under	3.3v,	the	line	code	to	use	is	analogReference(AR_EXTERNAL)
with	AR_EXTERNAL	and	not	EXTERNAL.

Pins	and	pull-up
The	old	way	of	activating	the	pull-up	resistor	was:

pinMode(pin,	INPUT)
digitalWrite(pin,	HIGH)

Because	the	pullup-selection	register	was	the	same	register	than	output-selection	register.

For	the	M0	(as	for	many	plateform),	the	code	to	use	is:

pinMode(pin,	INPUT_PULLUP)

Serial	ou	SerialUSB
99.9%	of	Arduino	Sketch	does	use	Serial.print	for	debugging	purpose	(or	serial	output).	On	the	official	SAMD/M0
Arduino,	this	instruction	use	the	Serial5	port	which	is	not	exposed	on	a	Feather.

Instead,	the	USB	port	on	official	Arduino	M0	is	called	SerialUSB.

Adafruit	did	fix	this	on	the	Adafruit	M0	by	redirecting	Serial	call	to	USB	calls.	So,	when	using	a	Feather	M0	everything
appears	to	work	to	properly	without	requiring	any	changes.

However,	if	you	want	to	use	a,	official	Arduino	SAMD,	you	will	have	to	use
SerialUSB	instead	of	Serial.	So	the	Adafruit	produit	is	better	on	this	point.

If	you	want	to	use	an	official	M0	without	the	need	to	change	all	the	Serial.print()	call	to	SerialUSB.print()	,	then
place	the	following	code:

#if	defined(ARDUINO_SAMD_ZERO)	&&	defined(SERIAL_PORT_USBVIRTUAL)
			//	required	for	Serial	operations	on	Zero	based	board
			#define	Serial	'''SERIAL_PORT_USBVIRTUAL'''
#endif

just	before	the	first	function	definition	in	the	code.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Forewords
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Analog_reference
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Pins_and_pull-up
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Serial_ou_SerialUSB
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#AnalogWrite_.2F_PWM_on_Feather_M0
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#analogWrite.28.29_and_range_of_PWM_value
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Missing_Header_file
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Start_the_Bootloader
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Memory_alignment
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Floating_point_conversion_.28dtostrf.29
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#How_many_RAM_available_.3F
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Store_data_in_the_microcontroler_Flash

Example:

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

AnalogWrite	/	PWM	on	Feather	M0
After	looking	through	the	SAMD21	datasheet,	it	appears	that	some	of	the	options	listed	in	the	multiplexer	table	don't
exist	on	the	specific	chip	used	in	the	Feather	M0.

For	all	SAMD21	chips,	there	are	two	peripherals	that	can	generate	PWM	signals:	The	Timer/Counter	(TC)	and
Timer/Counter	for	Control	Applications	(TCC).	Each	SAMD21	has	multiple	copies	of	each,	called	'instances'.

Each	TC	instance	has	one	count	register,	one	control	register,	and	two	output	channels.	Either	channel	can	be	enabled
and	disabled,	and	either	channel	can	be	inverted.	The	pins	connected	to	a	TC	instance	can	output	identical	versions	of
the	same	PWM	waveform,	or	complementary	waveforms.

Each	TCC	instance	has	a	single	count	register,	but	multiple	compare	registers	and	output	channels.	There	are	options
for	different	kinds	of	waveform,	interleaved	switching,	programmable	dead	time,	and	so	on.

The	biggest	members	of	the	SAMD21	family	have	five	TC	instances	with	two	'waveform	output'	(WO)	channels,	and
three	TCC	instances	with	eight	WO	channels:

TC[0-4],WO[0-1]
TCC[0-2],WO[0-7]

And	those	are	the	ones	shown	in	the	datasheet's	multiplexer	tables.

The	SAMD21G	used	in	the	Feather	M0	only	has	three	TC	instances	with	two	output	channels,	and	three	TCC	instances
with	eight	output	channels:

TC[3-5],WO[0-1]
TCC[0-2],WO[0-7]

By	following	the	signals	to	the	pins	made	available	on	a	Feather	M0,	the	following	pins	would	not	be	able	to
produce	PWM	signal:

Analog	Pin	A5

The	following	pins	can	be	configured	as	PWM	(without	conflict)	as	long	as	the	SPI,	I2C	&	UART	keeps	their	protocol
functions:

Digital	pins	5,	6,	9,	10,	11,	12	et	13
Analog	pins	A3	et	A4

When	only	the	SPI	keeps	the	protocol	function,	you	can	also	do	PWM	on	the	following	pins:

TX	(Digital	pin	1)
SDA	(Digital	pin	20)

analogWrite()	and	range	of	PWM	value
When	using	an	AVR	(like	Arduino	Uno),	the	instruction	analogWrite(pin,	255)	on	a	PWM	output	would	result	in	a
permanent	HIGH	signal	on	the	output	PIN.

On	a	Cortex	ARM	microcontroler,	the	output	signal	would	be	255/256th.	As	a	consequence,	there	is	always	a	small
pulse-down	to	0v.	If	you	need	a	continuously	HIGH	signal	then	the	analogWrite(pin,	255)	must	be	replaced	by
digitalWrite(pin,	HIGH)

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-Croquis-01.png
http://www.adafruit.com/

Missing	Header	file
You	may	have	some	code	using	a	library	not	supported	by	the	M0	code.	As	example,	if	you	have	some	code	containing
the	following	line:

#include	<util/delay.h>

Then	you	will	get	the	following	error

fatal	error:	util/delay.h:	No	such	file	or	directory
		#include	<util/delay.h>
																									^
compilation	terminated.
Error	compiling.

Wich	allow	to	identiy	the	line	(and	the	file)	where	the	error	occured.	You	would	just	need	to	include	the	library	loading
inside	a	#ifdef	structure	like	showed:

#if	!defined(ARDUINO_ARCH_SAM)	&&	!defined(ARDUINO_ARCH_SAMD)	&&	!defined(ESP8266)	&&	!defined(ARDUINO_ARCH_STM32F2)
	#include	<util/delay.h>;
#endif

The	line	here	upper	would	not	include	the	header	for	the	listed	architectures.

If	the	#include	is	present	in	your	Arduino	sketch	then	you	may	try	to	remove	the	#include	line.

Start	the	Bootloader
On	most	of	the	AVRs	(like	Arduino	Uno),	simply	press	the	reset	button	with	the	microcontroler	connected	on	USB
would	manually	start	the	bootloader.	The	bootloader	would	automatically	exists	after	few	seconds.

On	a	M0	microcontroler,	you	will	have	to	double	click	the	reset	button.	You	will	see	the	LED	pulsing	on	red	meaning
that	the	bootloader	is	active.	Once	in	this	mode,	the	M0	would	stay	in	the	bootloader	mode	forever	(there	is	no	"time
out").	Click	once	again	on	the	"reset"	button	to	restart	the	microcontroler.

Memory	alignment
There	is	few	change	that	you	reach	this	issue...	but	being	aware	of	this	may	help.

If	you	are	using	the	8	bits	plateform	then	you	probably	know	that	TypeCast	can	be	performed	on	on	variables.	Example:

uint8_t	mybuffer[4];
float	f	=	(float)mybuffer;

But	there	is	no	warranty	that	this	may	work	properly	on	32	bits	AVR	because	mybuffer	may	not	been	aligned	on	2	or	4
bytes	(voir	memory	alignment	https://en.wikipedia.org/wiki/Data_structure_alignment	on	Wikipedia).

An	ARM	Cortex-M0	can	only	directly	access	to	data	by	bloc	of	16-bits	(every	2	or	4	bytes).	Trying	to	access	an	even	byte
(byte	in	position	1	or	3)	would	cause	an	hardware	fault	and	will	stop	a	MCU.

Thankfully,	there	is	a	very	simple	workaround...	by	using	the	memcpy	function!

uint8_t	mybuffer[4];
float	f;
memcpy(f,	mybuffer,	4)

Floating	point	conversion	(dtostrf)
As	for	the	Arduino	AVR,	the	M0	libraries	doesn't	offer	a	full	support	to	convert	floating	point	value	to	string.

The	functions	like	sprintf	would	not	convert	floating	point	values.	Thankfully,	the	standard	AVR-LIBC	includes	the
dtostrf	function	able	to	handle	this	conversion.

Inconveniently,	the	M0	AVR	run-time	does	not	have	the	dtostrf	function!	You	may	see	some	thread	suggesting	to
#include	<avr/dtostrf.h>	the	dtostrf	function.	But	this	will	not	work	on	M0	even	if	it	compiles.

Instead,	have	a	look	to	this	discussion	thread	to	find	a	dtostrf	function	running	proprely:

http://forum.arduino.cc/index.php?topic=368720.0

https://en.wikipedia.org/wiki/Data_structure_alignment
http://forum.arduino.cc/index.php?topic=368720.0

How	many	RAM	available	?
The	ATSAMD21G18	does	have	32K	of	RAM	but	you	may	need	to	monitor	the	memory	usage	for	some	raison.	You	can	to
this	with	the	following	function:

extern	"C"	char	*sbrk(int	i);

int	FreeRam	()	{
		char	stack_dummy	=	0;
		return	&stack_dummy	-	sbrk(0);
}

Thanks	to	this	discussion	thread	http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879	on	the	Arduino	forums	for	the
trick!

Store	data	in	the	microcontroler	Flash
If	you	use	an	AVR	(Arduino)	on	regular	basis,	you	may	have	a	chance	to	use	PROGMEM.	PROGMEM	inform	the
compiler	to	store	the	content	of	a	variable	(or	a	string)	into	the	FLASH	memory	(to	save	RAM).

It	is	a	bit	more	easy	on	an	ARM	microcontroler.	Just	add	the	word	const	before	the	variable	name:

const	char	str[]	=	"A	quite	lonnnnnggggggg	striiiiiinnnnnnng";

The	string	is	now	stored	in	the	FLASH.	You	can	handle	the	string	as	it	was	stored	inside	the	RAM,	the	compiler	would
automagically	read	it	from	the	FLASH	(no	need	for	special	reading	function	like	those	required	for	PROGMEM
variables).

You	can	easily	check	where	the	data	is	stored!	Just	print	the	storage	address	of	the	variable:

Serial.print("Address	of	str	$");	Serial.println((int)&str,	HEX);

If	the	adress	is:

equal	or	greater	than	$2000000	then	the	data	is	in	the	SRAM.
between	$0000	and	$3FFFF	then	the	data	is	stored	in	FLASH

http://forum.arduino.cc/index.php?topic=365830.msg2542879#msg2542879

Using	the	SPI	Flash

Sommaire
1	Forewords
2	Format	the	Flash	memory

2.1	Error	while	formatting
3	Datalogging	example
4	Read	and	display	file	content
5	Full	Flash	example
6	Read	and	Write	CircuitPython	files
7	Access	to	the	SPI	Flash

Forewords
One	of	the	most	exciting	feature	of	the	M0	Express	board	is	this	small	FLASH	chip	wired	on	the	SPI	bus.	That	memory
could	be	used	to	provide	lot	of	services	like	storing	files,	python	script	and	many	more.

You	can	see	that	additional	FLASH	chip	like	a	small	SD	card	continously	wired	on	the	board.	This	flash	memory	is
available	through	a	library	very	similar	to	the	Arduino's	SD	card	https://www.arduino.cc/en/reference/SD	.	You	can	even	read	and
write	the	files	on	the	CircuitPython	filesystem	(Circuit	Python	use	this	Flash	to	store	the	Python	Script	and	files)!

You	will	need	to	install	the	Adafruit	SPI	Flash	Memory	library	https://github.com/adafruit/Adafruit_SPIFlash	in	Arduino	IDE	to	use	the
SPI	Flash	with	your	Arduino	sketch.	Click	on	the	link	below	to	download	the	library	source	code,	open	the	zip	file	and
copy	the	file	files	into	a	subfolder	named	Adafruit_SPIFlash	(remove	the	'-master'	added	by	GitHub	on	the	front	of	the
folder	name).	Place	this	new	library	next	to	your	other	Arduino	libraries:

Adafruit	Adafruit	SPI	Flash	library
https://github.com/adafruit/Adafruit_SPIFlash

Once	the	library	installed,	start	your	Arduino	IDE	to	access	the	various	examples	available	in	the	library:

fatfs_circuitpython
fatfs_datalogging
fatfs_format
fatfs_full_usage
fatfs_print_file
flash_erase

Thoses	exemples	would	allow	you	to	format	the	Flash	memory	with	the	FAT	filesystem	(the	same	filesytem	than	used	on
SD	card),	read	and	write	files	like	we	do	with	SD	card.

Format	the	Flash	memory
The	example	fatfs_format	will	format	the	SPI	FLASH	with	a	brand	new	FileSystem.	WARNING:	this	sketch	will
erase	all	the	data	stored	in	the	FLASH	memory,	including	any	data,	python	script!.

The	sketch	is	useful	when	you	need	to	erase	ALL	the	items	to	start	a	fresh	setup.	This	sketch	would	also	allow	you	to
recover	the	board	when	the	file	system	is	corrupted.

The	sketch	fatfs_format	and	exemples	here	under	are	not	compatible	with	the
CircuitPython	file	system!.	If	you	need	to	share	data	between	Arduino	and
CircuitPython	then	you	should	have	a	look	to	the	example	fatfs_circuitpython
described	here	below.

To	execute	the	formatting	sketch,	just	load	the	Arduino	IDE	and	updload	it	on	the	Feather	M0	board.	Then	open	the
serial	monitor	(at	115200	baud).	You	should	see	a	message	requiring	a	confirmation	before	formatting	the	Flash.

If	you	do	not	see	the	message,	close	the	serial	monitor,	press	the	reset	button	then	open	the	serial	monitor	again.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Forewords
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Format_the_Flash_memory
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Error_while_formatting
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Datalogging_example
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Read_and_display_file_content
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Full_Flash_example
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Read_and_Write_CircuitPython_files
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Access_to_the_SPI_Flash
https://www.arduino.cc/en/reference/SD
https://github.com/adafruit/Adafruit_SPIFlash
https://wiki.mchobby.be/index.php?title=Fichier:Download-icon.png
https://github.com/adafruit/Adafruit_SPIFlash

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Type	in	OK	in	the	serial	monitor	and	press	the	"send"	button	to	confirm	the	format	operation	of	the	Flash	memory.	It	is
necessary	to	type	the	OK	in	capital!

Once	done,	the	sketch	would	start	to	format	the	SPI	Flash	memoryt.	The	formating	procedure	need	1	minute	to	get
complete.	The	sketch	will	display	a	message	when	done.	Great,	you	have	a	drand	new	file	system.

Error	while	formatting

If	you	can't	get	the	Flash	memory	formated	and	receive	the	following	error:

Adafruit	SPI	Flash	FatFs	Format	Example
Flash	chip	JEDEC	ID:	0x1401501
!!!
This	sketch	will	ERASE	ALL	DATA	on	the	flash	chip	and	format	it	with	a	new	filesystem!
Type	OK	(all	caps)	and	press	enter	to	continue.
!!!
Partitioning	flash	with	1	primary	partition...
Couldn't	read	sector	before	performing	write!
Error,	f_fdisk	failed	with	error	code:	1

Then	you	will	need	to	use	an	older	library	version	(until	a	fixed	version	is	released).

See	this	thread	on	the	Adafruit	forums	https://forums.adafruit.com/viewtopic.php?f=57&t=128979&p=641983#p641983	.

Datalogging	example
A	common	usage	of	the	SPI	Flash	memory	is	the	datalogging.	The	example	fatfs_datalogging	shows	some
datalogging/writing	operation.	Open	the	sketch	into	Arduino	IDE	then	upload	the	Feather	M0	board.	Next,	open	the
serial	monitor	(at	115200	baud)	and	you	should	see	a	message	displayed	every	minutes	when	the	sketch	writes	a	new
line	in	the	SPI	Flash	file	system.

See	the	content	of	the	loop()	function	to	understand	how	to	write	into	a	file:

		//	Open	the	datalogging	file	in	write	mode.		the	FILE_WRITE	mode	will
		//	open	the	file	for	appending	(it	will	add	the	data	a	the	end
		//		of	the	file).
		File	dataFile	=	fatfs.open(FILE_NAME,	FILE_WRITE);
		//	Check	if	the	file	is	open	and	write	datas.
		if	(dataFile)	{
				//	Grab	the	data	from	sensors.	In	this	sample
				//	the	data	would	be	a	random	number.
				int	reading	=	random(0,100);
				//	Write	a	new	line	in	the	file.		
				//	The	user	can	use	the	same	functions	as	print	function	
				//	sending	data	to	the	serial	monitor.	
				//	EG:	to	write	2	CSV	entries	(coma	separated):
				dataFile.print("Sensor	#1");
				dataFile.print(",");
				dataFile.print(reading,	DEC);
				dataFile.println();
				//	The	file	must	be	closed	at	the	end	of	writing	operation.
				//	This	is	the	right	way	to	ensure	that	data	are	writtebn
				//	into	the	file.
				dataFile.close();
				Serial.println("New	value	written	to	the	file!");
		}

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-SPI-Flash-01.png
http://www.adafruit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=128979&p=641983#p641983

As	you	would	do	with	the	SD	library	for	Arduino,	you	first	need	to	create	a	File	object	by	calling	the	open	function	with
the	filename	and	file	access	mode	(FILE_WRITE	mode	appends	data	at	the	end	of	the	file).	However	instead	of	calling
the	open	global	function,	you	have	to	call	the	fatfs.open()	on	a	fatfs	object	created	to	access	the	file	system	on	the
SPI	Flash	(see	the	config	values	just	behing	the	#define).

Once	the	file	opened,	calling	the	print	and	println	method	on	the	file	object	would	write	the	data	to	the	file.	It	is	the
exact	same	way	than	sending	data	over	the	serial	monitor	for	sending	text,	numerical	values	and	other	types	of	data.

Just	check	twice	that	you	closed	the	file	system	(otherwise	you	way	lost	data	or	even	the	complete	file)!

Read	and	display	file	content
The	example	fatfs_print_file	would	open	a	file	(the	file	data.csv	per	default,	the	file	created	with	the
fatfs_datalogging	example)	then	it	displays	the	file	content	in	the	serial	monitor.	Open	the	fatfs_print_file	sketch	and
upload	it	to	the	Feather	M0	board	before	opening	the	serial	monitor	(at	115200	baud).

You	should	see	the	content	of	the	data.csv	file	(if	the	Flash	Memory	doesn't	yet	have	the	data.csv	file,	then	run	the
datalogging	example	to	create	it).

Please,	see	the	content	of	setup()	function	to	understant	how	to	read	a	file:

		//	Open	the	file	in	read	only	mode	(check	if	opens	succeed).
		//	The	FILE_READ	opens	the	file	to	read	it.
		File	dataFile	=	fatfs.open(FILE_NAME,	FILE_READ);
		if	(dataFile)	{
				//	The	file	is	now	open.	
				//	Display	the	content	char	by	char	until	the	
				//	end	of	file.
				Serial.println("File	open,	content	displayed	here	under:");
				while	(dataFile.available())	{
						//	Use	the	read()	function	to	extract	next	char.
						//	The	readUntil	or	readString	functions	can	also	be	use.
						//	See	the	exemple	fatfs_full_usage	for	more	information.
						char	c	=	dataFile.read();
						Serial.print(c);
				}
		}

In	the	same	way	as	datalogging	example,	you	need	to	create	a	File	object	by	calling	the	open	method	of	the	fatfs
object.

This	time,	the	mode	used	to	access	the	file	is	FILE_READ	indicating	our	intention	to	read	the	content	of	the	file.

Once	the	file	open	in	read	mode,	the	available	function	let	you	know	if	some	data	are	available	in	the	file.	Then,	the
read	function	read	a	byte	from	the	file.	The	combination	of	those	2	functions	allow	us	to	create	a	read	loop	which	check
the	availability	of	date	before	reading	it	(on	byte	at	the	time).

It	also	exists	advanced	read	functions	like	those	used	in	the	fatfs_full_usage	and	explained	indide	the	Arduino	SD	class
documentation	https://www.arduino.cc/en/reference/SD	(the	Flash	SPI	library	implements	the	same	functions).

Full	Flash	example
The	fatfs_full_usage	is	a	complete	example	demonstrating	reading	and	writing	operations	on	files.	This	example	use
all	the	library	functions	and	advanced	feature	like	file	existence,	folder	creation,	file	wiping,	etc.

Remember	that	SPI	Flash	library	is	designed	to	expose	the	same	interface	than	Arduino's	SD	library
https://www.arduino.cc/en/reference/SD	.	So	the	codes	and	samples	storing	data	on	SD	card	would	would	be	easy	to	adapt	to	the	SPI
Flash	library.	Just	create	a	fatfs	object	like	the	examples	here	upper.	You	will	also	have	to	use	the	open	method	on	the
object	(instead	of	the	global	open	function).	Once	the	reference	to	the	file	object,	all	the	functions	and	usages	would	be
identifcal	between	the	SPI	Flash	and	Arduino's	SD	library!

Read	and	Write	CircuitPython	files
The	example	fatfs_circuitpython	demonstrate	how	to	read	and	write	the	files	from	the	SPI	Flash	from	CircuitPython
file	system.	This	means	that	you	can	execute	CircuitPython	script	to	store	data	in	the	CircuitPython	file	system,	then
use	an	Arduino	sketch	using	this	library	to	interact	with	those	data.

Note:	before	running	the	exemple	fatfs_circuitpython	you	must	have	loaded	the	CircuitPython	on	the	board.	see	the
Adafruit's	M0	Express	guide	https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-is-circuitpython%7CPlease,	to
initialize	the	CircuitPython	file	system	in	the	SPI	Flash.	Once	the	CircuitPython	loaded	on	the	board,	you	can	execute
the	sketch	fatfs_circuitpython.

To	execute	the	sketch,	you	have	to	load	it	inside	Arduino	IDE	then	upload	it	to	the	Feather	M0	board.	Then,	you	have	to
open	a	serial	monitor	a	115200	baud.	You	should	see	messages	displayed	when	the	sketch	tries	to	read	and	write	files
on	the	Flask	memory.

https://www.arduino.cc/en/reference/SD
https://www.arduino.cc/en/reference/SD
https://learn.adafruit.com/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/what-is-circuitpython%7CPlease,

Specifically,	the	example	looks	for	the	files	boot.py	and	main.py	(since	CircuitPython	execute	thos	file	when	starting
the	board)	to	display	their	content.	After,	the	sketch	add	a	line	at	the	end	of	the	data.txt	file	available	in	the
CircuitPython	file	system	(the	file	is	created	if	not	yet	existing).

When	done,	you	can	reload	CircuitPython	on	the	board	to	load	and	read	the	exécuté	le	croquis,	vous	pouvez	recharger
CircuitPython	sur	la	carte	pour	lire	le	fichier	data.txt	directement	depuis	CircuitPython!

Let's	have	a	loot	to	the	sketch	code	to	understant	how	to	read	and	write	files	in	CircuitPython.	First,	an	instance	of	the
Adafruit_M0_Express_CircuitPython	class	is	created	with	the	instance	of	the	SPIFlash	class	(SPIFlash	is	used	to
access	the	Flash	content):

#define	FLASH_SS							SS1																				//	SSP	pin	from	Flash
#define	FLASH_SPI_PORT	SPI1																			//	SPI	port	where	the	Flash	is	wired

Adafruit_SPIFlash	flash(FLASH_SS,	&FLASH_SPI_PORT);					//	Use	the	hardware	SPI	bus	

//	Other	pins	can	also	be	used	for	the	SPI	bus	(software	SPI)!
//Adafruit_SPIFlash	flash(SCK1,	MISO1,	MOSI1,	FLASH_SS);

//	Finally,	create	an	Adafruit_M0_Express_CircuitPython	object	to	gain	access
//	to	a	SD	alike	interface.	The	Adafruit_M0_Express_CircuitPython	would	allow
//	the	sketch	to	access	the	CircuitPython	file	system	stored	inside	the	Flash.
Adafruit_M0_Express_CircuitPython	pythonfs(flash);

By	using	the	Adafruit_M0_Express_CircuitPython	class,	you	get	a	"File	System"	objet	type	compatible	with
read/write	operations	over	a	CircuitPython	file	system.	This	point	is	important	for	the	interoperability	between
CirctuitPython	and	Arduino.	CircuitPython	use	a	particular	partitioning	of	the	Flash	which	is	not	compatible	simpler
library	(like	those	mentionned	in	another	examples).

One	the	Adafruit_M0_Express_CircuitPython	class	instance	created	(instance	named	pythonfs	in	the	sketch)	you
can	interact	with	the	file	system	like	an	Arduino's	SD	library	https://www.arduino.cc/en/Reference/SD	.	You	can	open	files	in
read/write	mode,	create	folder,	drop	files	and	folders	(and	even	more).

Here	a	sketch	looking	for	the	boot.py	file	and	displaying	its	content	on	the	screen	(char	by	char):

		//	Check	the	boot.py	file	existence	THEN	display	it	on	the	screen
		if	(pythonfs.exists("boot.py"))	{
				File	bootPy	=	pythonfs.open("boot.py",	FILE_READ);
				Serial.println("Display	boot.py...");
				while	(bootPy.available())	{
						char	c	=	bootPy.read();
						Serial.print(c);
				}
				Serial.println();
		}
		else	{
				Serial.println("No	boot.py	file...");
		}

Le	file	write	operation	is	also	very	simple,	the	following	sketch	will	add	data	to	the	data.txt	file:

		//	Create	and	add	data	in	the	file	data.txt	
		//	then	append	a	carriage	return.
		//	Later,	the	CircuitPython	script	will	be	able	to	
		//	read	the	file	content!
		File	data	=	pythonfs.open("data.txt",	FILE_WRITE);
		if	(data)	{
				//	Add	a	new	line	of	data:
				data.println("A	great	day	to	CircuitPython	from	our	beloved	Arduino	sketch!");
				data.close();
				//	See	also	the	examples	from	the	fatfs_full_usage	
				//	and	fatfs_datalogging	for	mode	information	about	
				//	interaction	with	files.
				Serial.println("A	new	line	was	added	to	the	data.txt	file!");
		}
		else	{
				Serial.println("Erreur,	ne	sais	pas	ouvrir	le	fichier	en	écriture!");
		}

Access	to	the	SPI	Flash
Arduino	is	not	able	to	expose	himself	as	a	storage	device	(a	"mass	storage"	device).	Instead	you	will	have	to	switch	to
CircuitPython	to	expose	the	SPI	Flash	as	storage	device.	Here	is	the	technique	to	use:

Start	the	bootloader	of	the	Express	board.	Drag	and	drop	the	last	version	of	the	circuitpython	(the	UF2	file).
After	a	while,	you	should	see	a	CIRCUITPY	drive	containing	the	file	boot_out.txt.	Great,	the	Circuit	Python
filesystem	is	initialized	on	the	SPI	Flash.
Open	the	Arduino	IDE	and	upload	the	fatfs_circuitpython	sketch	available	in	the	Adafruit's	SPI	FLASH	library.
Open	the	serial	console	and	start	the	sketch.	Voila!	the	CircuitPython	file	system	is	properly	mounted	and	the	file
data.txt	created	and	initialized.

https://www.arduino.cc/en/Reference/SD

So,	the	Arduino	Sketch	did	manipulated	a	file	onto	the	SPI	Flash	owning	the
CircuitPython	filesystem!

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

This	time,	we	will	open	the	file	created	by	the	Arduino	sketch.

Let	plug	again	the	board	on	the	computer,	restart	the	bootloader	on	the	Express	board	--AND--	drag/drop	the
circuitpython.uf2	on	the	drive	BOOT	made	accessible	by	the	bootloader.	Great,	CircuitPython	is	now	installed
(again)	on	the	board.
After	a	a	while,	the	CIRCUITPY	drive	is	made	available	by	CircuitPyhton.	This	would	expose	the	SPI	Flash	content
as	a	Mass	Storage	device.	You	can	now	see	the	file	data.txt	created	by	our	Arduino	Sketch,	Open	it	and	read	it's
content	:-)	!

Crédit:	AdaFruit	Industries	www.adafruit.com	http://www.adafruit.com

Once	your	datalogging	sketch	finish,	you	can	simplify	the	procedure	by	copying	the	CURRENT.UF2	from	the	BOOT
drive	to	make	"ready	to	use	copy"	of	your	sketch.	You	could	now	load	the	CircuitPython	to	access	the	CircuitPython	file
system	and	then	switch	back	to	you	Arduino	sketch	by	restoring	the	CURRENT.UF2	on	the	Express	Board!

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-SPI-Flash-02.png
http://www.adafruit.com/
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-ArduinoIDE-SPI-Flash-03.png
http://www.adafruit.com/

BMP280	sensor

Sommaire
1	About	the	BMP280	breakout

1.1	technical	details
2	Install	the	Library

2.1	Manual	Installation
2.2	Easier	Installation

3	Wiring	the	sensor
4	Testing	the	sensor
5	Pressure	and	altitude

5.1	About	pressure	reading
5.2	SLP:	Sea	Level	Pressure
5.3	Pressure,	SLP	and	altitude
5.4	The	sea	level	pressure	change	every	day!
5.5	The	sensor	doesn't	give	the	right	altitude!
5.6	The	pressure	is	not	correct	atmosphérique	semble	incorrecte!

About	the	BMP280	breakout
The	BMP280	sensor	can	measure	the	atmospheric	pressure	and	temperature	(because	the	temperature	also	impact	the
sensor	physics).

The	BMP280	is	a	Bosch	sensor	upgraded	from	the	BMP085/BMP180/BMP183	serie.	This	sensor	is	really	great	to	make
environmental	or	weather	measurements.	Best	of	all,	it	can	be	used	over	an	I2C	or	a	SPI	bus!

It	is	one	of	the	best	sensor,	it	offer	good	accuracy	for	an	affordable	price.	The	accuracy	is	±1	hPa	for	the	pressure	and
±1.0°C	for	the	temperature.	This	sensor	is	not	really	made	to	measure	the	temperature	but	you	can	estimate	its	range
with	the	BMP280.

As	the	pressure	also	change	with	the	altitude,	the	sensor	accuracy	allows	you	to	use	the	BMP280	to	make	an	altimeter
(with	accuracy	of	±1m	at	worste,	about	0.25m	in	best	conditions).

To	ease	the	usage	of	this	sensor,	the	SMD	component	is	solder	on	a	breakout	board	with	some	additional	passive
electronics.	The	board	also	bring	a	level	shifter	and	3V	voltage	regulator	so	it	is	save	for	3V	and	5V	logic
microcontrolers.

technical	details

Fiche	technique	du	BMP280	https://df.mchobby.be/datasheet/bmp280.pdf	(Bosch,	pdf)
Size:	19.2mm	x	17.9mm	x	2.9mm
weight:	1.3	gr

Install	the	Library
Manual	Installation

The	Adafruit's	BMP280	is	provided	with	a	library	available	on	GitHub.

You	can	download	and	install	the	library	manually	by	dowloading	it	from	the	BMP280	Repository.

Download	the	BMP280	lib	from	the
repository

https://github.com/adafruit/Adafruit_BMP280_Library

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_the_BMP280_breakout
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#technical_details
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Install_the_Library
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Manual_Installation
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Easier_Installation
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring_the_sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Testing_the_sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Pressure_and_altitude
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_pressure_reading
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#SLP:_Sea_Level_Pressure
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Pressure.2C_SLP_and_altitude
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_sea_level_pressure_change_every_day.21
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_sensor_doesn.27t_give_the_right_altitude.21
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_pressure_is_not_correct_atmosph.C3.A9rique_semble_incorrecte.21
https://wiki.mchobby.be/index.php?title=Fichier:BMP280.jpg
https://df.mchobby.be/datasheet/bmp280.pdf
https://github.com/adafruit/Adafruit_BMP280_Library
https://github.com/adafruit/Adafruit_BMP280_Library

Note	that	BMP280	library	rely	on	the	Adafruit_Sensor	library	which	declare	an	unified	data	structure	to	store	data
across	all	the	Adafruit's	Sensors	Libraries.

Download	the	Unified	Sensor	lib	from
the	repository

https://github.com/adafruit/Adafruit_Sensor

Easier	Installation

You	can	also	use	the	"Library	Manager"	to	ease	the	installation	of	the	BMP280	library.

From	the	"Sketch"	menu,	select	the	sub-menu	"Include	library"	-->	"Library	Manager"	like	shown	on	the	picture
here	under.

In	the	library	manager,	key-in	the	value	"BMP280"	in	the	search	box.	Then	click	on	the	install	button	in	the	front	of	the
Adafruit	BMP280	Library	by	Adafruit.

Great,	the	BMP280	library	is	now	installed!

You	must	also	install	the	unified	sensor	library!	If	not	yet	done,	proceed	the
installation	of	the	library	as	described	here	under.

From	"Library	Manager",	search	for	the	"Adafruit	Unified	Sensor"	like	shown	on	the	picture	here	under.

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-00.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-01.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

Then	install	it.

Wiring	the	sensor
The	BMP280	is	wired	on	the	I2C	bus	of	the	Feather.

Testing	the	sensor
The	sensor	can	be	easily	tested	with	the	Adafruit	Example	code	(installed	with	the	library).

The	sample	code	is	available	through	the	File	menu	under	the	sub-menu	Example	-->	Adafruit	BMP280	Library	-->
BMP280test.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-02.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-wiring.png

The	content	of	the	example	code	is	displayed	here	under	(and	reduced	to	the	minimum	lines	for	better	reading).

#include	<Wire.h>
#include	<Adafruit_Sensor.h>
#include	<Adafruit_BMP280.h>

Adafruit_BMP280	bme;	//	I2C
		
void	setup()	{
		Serial.begin(9600);
		Serial.println(F("BMP280	test"));
		
		if	(!bme.begin())	{		
				Serial.println("Could	not	find	a	valid	BMP280	sensor,	check	wiring!");
				while	(1);
		}
}
		
void	loop()	{
				Serial.print("Temperature	=	");
				Serial.print(bme.readTemperature());
				Serial.println("	*C");
				
				Serial.print("Pressure	=	");
				Serial.print(bme.readPressure());
				Serial.println("	Pa");

				Serial.print("Approx	altitude	=	");
				//	1013.25	is	the	pressure	at	sea	level.	It	should	be	ajusted
				//	with	your	local	forecast	for	a	corect	evaluation	of	altitude
				Serial.print(bme.readAltitude(1013.25));	
				Serial.println("	m");
				
				Serial.println();
				delay(2000);
}

Compile	and	upload	to	sketch	the	board.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-03.png

Then	open	the	serial	monitor	(configured	at	9600	baud)	and	you	should	see	the	following	on	the	screen.

The	sketch	display	pressure	and	other	parameter	every	2	seconds.

Pressure	and	altitude
This	section	could	also	be	named	"the	Weather	Station	OR	the	Altimeter".

Depending	on	the	use	case	(weather	station	or	altimeter",	the	way	of	using	the	BMP280	is	slightly	different.

About	pressure	reading

The	pressure	is	returned	in	Pascals	(an	unit	from	International	System	of	Units
https://en.wikipedia.org/wiki/International_System_of_Units).	100	Pascals	=	1	hPa	=	1	millibar.	The	barometric	pressure	is	often	using	the
millibar	or	mm	of	mercury	as	unit.	Just	note	that	1	pascal	=	0.00750062	mm	of	mercury	mercure.

SLP:	Sea	Level	Pressure

You	can	also	calculate	the	altitude	from	the	pressure.	However,	to	proprely	measure	the	altitude,	you	need	to	know	the
pressure	at	the	sea	level	(hPa,	pressure	that	change	every	day)!.	The	BMP280	is	really	precise,	however	it	may	be
difficult	to	have	precise	evaluation	of	the	altitude	if	you	don't	know	the	pressure	at	the	sea	level	(the	pressure	of	day	at
the	sea	level).

Pressure,	SLP	and	altitude

SLP	means	Sea	Level	Pressure	(also	knwon	as	PNM	pressure).	Most	of	the	advanced	the	weather	station	does
transform	the	current	pressure	to	normalized	SLP	pressure	before	displaying	it.	If	all	pressure	in	the	country	are
expressed	as	SLP	pressure	then	it	is	more	easy	to	determine	the	wind	(and	cloud)	movements	across	the	country,	from
higher	pressure	to	lower	pressure.

Here	is	a	small	picture	that	shows	the	relation	between	normalized	SLP	pressure,	altitude	and	pressure	given	by	a
sensor	(like	the	BMP280).

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-04.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-05.png
https://en.wikipedia.org/wiki/International_System_of_Units

Let's	say	that	we	readed	the	pressure	of	950	hPa	at	our	house	with	the	BMP280.	The	house	sit	at	523m	of	altitude.

If	we	want	to	know	the	SLP	pressure,	it	is	like	sink	a	well	under	the	house	(down	to	the	sea	level).	At	the	bottom	of	the
well,	we	have	more	air	over	our	head	so	the	pressure	will	be	greater	than	950	hPa.	In	real	world,	we	do	not	have	to	sink
a	well,	we	do	know	the	altitude	of	our	house	(at	523m)	so	we	can	estimate	the	correction	to	apply	(corresponding	to	a
column	of	523m	of	air).	So,	from	the	950hPa	read	at	house,	we	can	calculate	the	corresponding	pressure	at	sea	level
(SLP	pressure).	Together	with	the	other	SLP	values,	we	can	estimate	the	movement	of	clouds	:-)	.

In	real	world,	we	cannot	sink	a	well	under	the	house,	neither	know	exact	altitude	of	the	house.

Here	the	steps	to	follow	with	the	BMP280	to	estimate	the	altitude	of	the	house:

1.	 Find	the	hPa	(or	mmbar)	pressure	at	Sea	Level	on	a	WebSite
2.	 Use	that	value	as	baseline	(don't	hesitate	to	multiply	it	by	100)
3.	 Use	the	sensor	and	the	BMP280	library	to	read	the	altitude.
4.	 Calculate	the	correction	value	(for	the	air's	colonne)	in	hPa	=	height-in-meter	/	8.3

When	you	have	to	"correction"	value	you	don't	have	to	care	anymore	about	the	baseline.

Indeed,	we	can	read	the	current	pressure	(without	caring	about	the	baseline)	THEN	we	add	the	"correction"	value	-->
Tadaaa!	We	have	the	SLP	pressure	(the	same	than	displayed	on	Reference	Weather	Station).

#	mean	pressure	at	the	sea	level	(not	critical	for	SLP	pressure)
p.baseline	=	101325
#	SLP	pressure	
p	=	bmp280.pressure	+	compensation

where	p	would	contains	pressure	normalized	at	sea	level	(so	the	SLP	value).

The	downside	of	the	"mean	pressure	value"	approach	(101325	Pa)	is	that	you	cannot	estimate	the	altitude	with
accuracy.	However,	by	updating	the	baseline	value	every	day	with	the	"day's	pressure"	at	sea	level	(see	on	Internet
broadcast	website)	then	the	altitude	calculation	would	be	fairly	precise.

Just	remind:

If	you	plan	to	do	a	Weather	station	then	you	have	to	care	about	the	correction	in	order	calculate	the	normalized
value	at	sea	level.	Altitude	is	not	useful	since	the	weather	station	doesn't	move.
if	you	need	a	flying	sensor	in	a	rocket	then	you	have	to	care	about	the	baseline	value	(sea	level	pressure	of	the
day)	for	have	a	accurate	measure	the	the	altitude.

The	sea	level	pressure	change	every	day!

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-50.jpg

The	usual	pressure	at	sea	level	is	about	1013.25	mbar	(or	1013.25	hPa	or	101325	Pa).

However,	this	value	depends	on	the	weather	conditions	and	quantity	of	steam	in	the	air.

By	example,	today	the	pressure	is	1002.00	hPa	at	the	Belgian's	sea	level.

this	value	is	critical	if	you	want	to	evaluate	the	altitude	of	the	sensor..	It	is	also	important	to	know	the	current	altitude	if
you	plan	to	calculate	the	"correction"	for	the	normalized	SLP	pressure.

So	I	have	fixed	the	baseline	as	follow	before	reading	the	altitude:

Serial.print(bme.readAltitude(1002.00));	
Serial.println("	m");

It	is	quite	easy	to	know	the	current	sea	level	pressure	by	using	an	Internet	Weather	Broadcast	like	this	link	to
meteobelgique.be	http://www.meteobelgique.be/observations/temps-reel/stations-meteo.html

The	sensor	doesn't	give	the	right	altitude!

My	sensor	does	indicates	an	altitude	of	189m	whereas	the	reference	weather	station	(next	to	house)	is	known	to	be	at
120m	height	(at	the	top	of	the	tower)!	What's	wrong	with	the	sensor?

The	altitude	is	deduced	from	the	difference	of	local	pressure	and	pressure	at	the	sea	level.

If	you	want	to	obtain	an	accurate	altitude	value	with	the	BMP280	then	you	need	to	know	the	pressure	at	the	sea	level
(the	baseline)	with	precision.

Once	the	baseline	value	corrected,	you	will	have	the	correct	altitude:

bme.readAltitude(1002.00)

The	sensor	would	return	the	right	altitude	(104m)	for	the	sensor	which	is	quite	good	since	we	are	not	in	the	tower	(like
the	reference	weather	station).

The	pressure	is	not	correct	atmosphérique	semble	incorrecte!

My	sensor	returned	a	pressure	of	98909	pascal	(so	989.09	hPa)	whereas	the	reference	weather	station	does	mentino
1002	hPa!

The	sensor	value	is	right,	it	just	not	apply	the	correction	to	indicates	the	Normalized	SLP	pressure	(equivalent	pressure
at	the	sea	level).	The	reference	reference	weather	station	does	applies	this	correction	for	yo	(so	they	displays
normalized	SLP).

Let's	do	the	correction	on	the	value...

First:	read	the	preceding	point,	from	it	we	know	:

that	we	have	to	set	the	baseline	to	the	current	pressure	at	day's	sea	level	pressure	(baseline=100200)
once	done,	we	can	use	the	sensor	to	calculate	the	current	altitude	of	the	sensor	(in	our	case,	it	is	104	m)
the	pressure	decrease	of	1hPa	every	time	we	increase	the	altitude	of	8.3m	.

Next,	on	the	reference	Weather	station:

The	weather	station	does	normalize	the	atmospheric	pressure	calculate	local	pressure	at	the	Sea	Level	altitude	(called
SLP	for	"Sea	Level	Pressure"	also	named	"PNM"	for	Pression	Niveau	Mer).

This	means	that	reference	weather	station	applies	the	correction	(compensating)	to	the	read	value.

For	the	reference	station	next	to	house,	its	height	is	120m.	so	the	correction	adds	the	air	column	of	120m	height	over
the	sensor	value	to	get	the	normalized	SLP	pressure.	So	the	correction	is	evaluated	to	(120	/	8.3)	hPa	=	14.45	hPa.

Let's	apply	the	same	principle	to	our	BMP280	readings:

In	our	case,	we	know	that	the	altitude	of	the	BMP280	sensor	is	104m.	Remind,	the	pressure	is	reduced	of	1hPa	every
time	our	altitude	increase	of	8.3m.

For	104m,	the	air	column	until	the	sea	level	correspond	to	104	/	8.3	=	12.53	hPa	additional	pressure.

As	the	sensor	give	the	989.09	hPavalue,	the	correction	to	have	the	Normalized	SLP	is	989.09	+	12.53	=	1001.62	hPa.
Great!	it	is	almost	the	same	value	than	reference	weather	station	next	to	home	(to	remind,	it	communicates	1002	hPa).

Please	note	that	the	today's	pressure	is	1002	hPa	and	our	normalized	pressure	is
also	1002	hPa.	This	is	rare	situation	and	means	that	the	air	will	not	flow	in	any	way
between	our	location	and	the	sea.

http://www.meteobelgique.be/observations/temps-reel/stations-meteo.html

TMP36	sensor

Sommaire
1	About	the	TMP36	Sensor

1.1	Technical	detail
1.2	How	to	measure	the	temperature

2	Wiring
3	Testing	the	sensor

3.1	Low	resolution	reading
3.2	High	resolution	reading

About	the	TMP36	Sensor
The	TMP36	is	the	reference	analogue	temperature	sensor	in	the	Arduino	world.	It	is	affordable,	small	et	power	efficient.
For	sure	there	are	better	temperature	sensors	but	this	one	will	do	the	job	for	almost	nothing	:-)

This	sensor	is	very	common	and	easy	to	use.	It	is	also	one	of	the	components	of	the	ARDX	development	kit
https://shop.mchobby.be/product.php?id_product=11	.

With	the	TMP36,	it	is	possible	to	measure	a	temperature	from	-50°C	to	125°C,	the	output	voltage	is	proportional	to	the
temperature.

Don't	be	fooled,	the	TMP36	looks	like	a	transistor	(eg:	P2N2222AG)	but	it	isn't	a	transistor.	It	is	a	complex	sensor
within	a	package	identical	to	a	transistor.

There	are	3	pins	on	the	TMP36.

the	ground	(on	the	left),
the	output	signal	(center	position),
the	+5	volts	(on	the	right)

The	sensor	output	signal	does	output	10	millivolts	per	degree	(with	500mV	offset	for	temperature	under	0°C).

Eg:

25°	C	-->	output	=	750	mV
0°	C	-->	output	=	500mV

Technical	detail

Analog	output	(see	graphics)
Temperature	range:	from	-50°C	to	125°C
Power	supply	range:	2.7	to	5.5v
TMP36	datasheet	http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html	(analog.com,	html)

How	to	measure	the	temperature

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_the_TMP36_Sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Technical_detail
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#How_to_measure_the_temperature
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Testing_the_sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Low_resolution_reading
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#High_resolution_reading
https://shop.mchobby.be/product.php?id_product=11
https://wiki.mchobby.be/index.php?title=Fichier:TMP36-pinout.jpg
http://www.analog.com/en/mems-sensors/digital-temperature-sensors/tmp36/products/product.html

It	will	be	necessary	to	convert	the	analogue	voltage	intro	degree.	As	the	TMP36	can	also	measure	negative
temperature,	the	0	degree	Celcius	is	placed	at	500	mV	offset.	So,	any	voltage	under	0.5	Volt	is	a	negative	temperature.

Here	is	the	formula	to	use	with	a	TMP36	powered	at	3.3v:

Temp	in	°C	=	(output_voltage_in_mV	-	500)	/	10

So,	if	we	do	have	an	output	voltage	of	exactly	1	Volt	(1000	mV)	then	the	temperature	would	be

temp	=	(1000	-	500)/10

So	50	Celcius	degrees.

Wiring
To	use	the	TMP36,	connect:

The	pin	1	(on	the	left)	to	a	power	source	(3.3V),
The	pin	3	(the	the	right	droite)	to	the	ground/GND.
The	pin	2	(middle	one)	to	the	A3	analogue	input.

The	TMP36	output	voltage	would	range	from	0V	@	-50°C	to	1.75V	@	125°C.	So	no	risk	for	our	3V	based	microcontroler.

Testing	the	sensor
In	the	both	case	show	here	under,	the	measured	temperature	would	be	identical.

However,	if	your	project	does	need	a	high	resolution	analog	reads	then	it	may	be
appropriate	to	explore	the	"High	Resolution	Reading"	example.

By	default,	the	Arduino's	analogRead()	use	a	10	bit	coding.	So	the	range	of	possible	value	return	by	analogRead()	is	0
to	1024	(for	0	to	3.3v).	This	means	that	the	accuracy	of	reading	is	3.3	/	1024	=	0.0032	Volts,	so	3.2	mV.

As	the	M0	does	have	an	ADC	(Analog-to-Digital	Converter)	with	a	precision	of	12	bits,	we	could	also	use	the
analogReadResolution(12)	to	upgrade	the	analogRead()	resolution	to	12	bits.	In	such	case,	the	range	of	possible
value	return	by	analogRead()	is	0	to	4095	(for	0	to	3.3v).	As	we	have	a	real	12bit	ADC,	we	can	rely	on	that	accuracy	(it
is	not	a	10	bits	ADC	storing	the	data	into	a	12	bits	integer).	with	12bits	we	have	an	reading	accuracy	of	3.3	/	4095	=
0.000805	Volts,	so	0.805	mV.

https://wiki.mchobby.be/index.php?title=Fichier:TMP36-Graph.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-TMP36-01.png

Low	resolution	reading

//	where	is	wired	the	TMP36
const	int	temperaturePin	=	A3;	//	analogue	input

//	Executed	once	when	starting	the	microcontroler
void	setup()	{
			//	start	serial	connexion	with	the	computer
			Serial.begin(9600);	
}

//	Executed	again	and	again
void	loop()	{	
			//	read	the	voltage	of	TMP36
			float	voltage	=	getVoltage(temperaturePin);	
			Serial.print("Voltage	:	");
			Serial.print(voltage);
			Serial.println("	Volts");	
			//	convert	voltage	to	temperature
			//			Degrees	=	(voltage	-	500mV)	multiplied	by	100
			float	temperature	=	(voltage	-	.5)	*100;
			Serial.print("Temperature:	");
			Serial.print(temperature);	
			Serial.println("	°C");
			Serial.println("	");
			delay(1000);	//	wait	1	second
}

/*
	*	getVoltage()	-	return	the	voltage	of	an	analog	pin	
	*/
float	getVoltage(int	pin){
			//	AS	the	sketch	does	not	call	the	analogReadResolution()
			//				function	to	change	the	analog	reading	resolution	
			//	THEN	Arduino	use	the	defaut	12	bits	resolution!
			//	Under	12	bits	resolution,	the	analogRead()	returns
			//				a	value	between	0	&	1024.
			//
			//	Convert	digital	value	between	0	&	1024	to	
			//				voltage	between	0	&	3.3	volts.
			//				(each	unit	equal	3.3	/	1024	=	3.2	millivolts)
			return	(analogRead(pin)	*	.0032);
}

Once	the	sketch	uploaded	to	the	board,	you	can	start	the	Serial	Monitor

Which	produce	the	following	result	on	the	Serial	Monitor

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-04.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-TMP36-60.png

RFM69HCW	radio

Sommaire
1	RFM69	Radio	Module
2	Raw	vs	Packet	Transmission
3	Power	Pins
4	SPI	Interface	Pins
5	Antenna	spot
6	Extra	GPIOs	Pins

RFM69	Radio	Module
Before	starting	make	sure	you	have	your	Feather	and	Arduino	working	properly	with	basic	functionalities.	This	will
make	this	part	more	easier	and	you	can	upgrade	your	project	to	radio	transmission.

Both	RFM69	and	RFM9x	LoRa	breakouts	have	the	exact	same	pinouts!	And	they	exists	in	900	MHz	or	433	MHz	flavor.

The	silkscreen	identify	the	RFM69HCW	-OR-	LoRa
The	900	MHz	modules	have	a	green	or	blue	dot	on	top.
The	433	Mhz	modules	have	a	red	dot	on	top.

The	sub-GHz	radio	transmission	does	have	lower	throughput	so	it	is	not	made	to	stream	audio	or	video!	The	sub-GHz	is
suited	for	small	packets	of	data.	The	data	rate	is	adjustable	but	its	common	to	stick	to	around	19.2	Kbit	per	second.
Lower	is	the	rate	and	better	woud	be	the	transmissions.

To	use	such	modules	you	will	need	both	of	them!	The	radios	must	be	matched	in	frequency	(eg:	433	MHz	&	433	MHz
will	match,	433	MHz	&	900	MHz	will	not	match).

The	both	module	must	use	the	same	encoding	schemes.	You	cannot	use	a	RFM69	900	MHz	packet	radio	together	with	a
RFM9x	packet	radio	(LoRa).

In	Belgium,	you	cannot	use	the	RFM69	900	Mhz	without	having	the	appropriate
license,	see	this	"IBTP	Frequency	Plan"	link	for	more	details
https://www.bipt.be/en/operators/radio/frequency-management/frequency-plan	.

According	to	the	same	"IBTP	Frequency	Plan	https://www.bipt.be/en/operators/radio/frequency-management/frequency-plan	"	the	RFM69HCW
should	be	used	between	430-440	MHz.

Raw	vs	Packet	Transmission

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#RFM69_Radio_Module
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Raw_vs_Packet_Transmission
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Power_Pins
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#SPI_Interface_Pins
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Antenna_spot
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Extra_GPIOs_Pins
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW.png
https://www.bipt.be/en/operators/radio/frequency-management/frequency-plan
https://www.bipt.be/en/operators/radio/frequency-management/frequency-plan

The	SX1231	module	used	on	the	RFM69	breakout	board	can	be	used	in	'raw	Rx/Tx'	where	it	modulates	incoming	bits
(from	pin	#2)	and	sends	them	on	the	radio.	In	'raw	Rx/Tx'	there	is	no	error	correction	and	no	addressing.	This	mode	is
weak	and	error	prone	so	it	will	not	be	covered.

Packet	mode	will	be	suited	for	almost	99%	of	use	cases.	When	packetized,	the	code	can	setup	a	recipient	for	the	data,
ensure	error	correction	(data	transmitted	correctly),	automatic	retries	on	transmission	error	and	acknowledgement
when	the	packet	is	delivered.	In	packet	mode,	you	got	a	reliable	data	pipe,	transparent	communication	without	getting
care	about	the	complex	details	of	data	transmission	over	radio	frequencies.

With	a	SX1231	module,	the	complexity	is	reduced	to	4	main	characteristics	more	easy	to	handle:

the	frequency	to	use
the	power	level	to	use
the	encryption	key	to	use
the	appropriate	antenna	(depending	on	the	expected	transmission	range)

Power	Pins

GND:	Common	ground	between	logic	and	power.
Vin:	Power	In	3.3	to	6V.	The	board	regulated	it	to	3.3V.	Be	sure	you	can	supply	up	to	150mA	on	this	pin	since
Radio	Emitting	can	reach	this	current	level.
EN:	Enbable	Pin	used	to	switch	off	the	Power	supply	(and	the	radio	module).	EN	pin	use	a	pull-up	resistor	to
maintain	the	regulator	enabled,	just	set	it	to	LOW	to	switch	off	the	radio.

SPI	Interface	Pins
Those	pins	are	use	to	communicate	with	the	host	micro	controller.	The	standard	SPI	bus	pins	are	MISO,	MOSI,	CLK	and
ChipSelect.

This	radio	breakout	also	expose	the	radio	RESET	pin	and	radio	INTERRUPT	pin	(named	G0)	to	offer	a	better	control
over	the	Radio	communication.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-SX1231.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Power.png

All	the	pins	(except	extra	GPIOs)	are	wired	thought	a	level	shifter.	This	means	that
logical	level	(3.3	or	5V)	will	be	compatible	with	the	voltage	applied	on	Vin!

MISO:	Master	In	Slave	Out.	This	pin	is	used	to	send	data	from	the	radio	(the	slave)	to	the	micro	controller	(the
master).
MOSI:	Master	Out	Slave	In.	This	pin	is	used	by	the	micro	controller	to	send	data	to	the	radio.
SCK:	Clock	signal	used	to	synchronise	bits	exchanges	between	the	Master	and	the	Slave.
CS:	This	is	the	Chip	Select.	Place	it	to	LOW	level	to	initiate	transaction	with	the	radio	module.	The	CS	pin	make
sense	when	several	slaves	(eg:	radio	module	+	LCD	display)	are	present	on	the	SPI	bus.
RST:	The	reset	pin	of	the	radio	module.	Set	it	to	LOW	to	reset	the	radio	module.
G0:	This	is	the	GPIO	0	pin	of	the	radio	module.	This	pin	has	a	special	interruption	function	attached	to	it	because	it
act	as	IRQ	(Interrupt	Request)	pin.	The	radio	module	manipulate	it	to	send	to	notification	toward	the	micro
controller.	This	pin	is	in	3.3V	logic.

Antenna	spot

There	are	3	ways	to	connect	an	antenna	on	this	spot.

The	cheapest	is	the	wire	antenna	(a	simple	dipole)	and	the	best	option	is	the	SMA	connector.

An	antenna	is	ABSOLUTELY	REQUIRED	to	allow	any	data	transmission.	No
communication	possible	(even	1	meter)	without	antenna.

For	testing	purpose,	we	suggest	to	twist	a	wire	inside	the	antenna	hole	(take	care	to	not	touch	the	ground	spots	with
the	wire).

Later	on,	you	would	focus	on	antenna	choice:

A	wire	inside	the	antenna	hole	(said	a	wire	dipole).
A	µFl	connector	https://shop.mchobby.be/product.php?id_product=1418	to	plug	antenna.
A	PCB	SMA	connector	https://shop.mchobby.be/product.php?id_product=1419	also	to	plug	other	kind	of	antenna.

A	µFl	connector	(also	named	uFl)	is	looking	to	this:

A	PCB	SMA	Connector	is	looking	to	this:

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-SPI.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Antenna.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png
https://shop.mchobby.be/product.php?id_product=1418
https://shop.mchobby.be/product.php?id_product=1419
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-uFL-connector.jpg

The	CanSat	tutorials	also	have	a	section	dedicated	to	the	Antenna	and	alternative	communication	devices

Extra	GPIOs	Pins

The	radio	module	also	feature	5	additionnal	GPIOs	(from	G1	to	G5).

As	they	are	usually	free	for	use	(not	used	for	notification	or	radio	functions)	you	can	control	them	for	the	purpose	of
your	project.

Those	pins	are	3.3V	logic	without	level	shifting.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-SMA-connector.jpg
https://wiki.mchobby.be/index.php?title=ENG-CANSAT-ANTENNA
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-GPIOs.png

RFM69HCW	Testing

Sommaire
1	Forewords
2	Installing	the	RadioHead	library
3	About	Antennas
4	Frequency,	Encryption	&	Power

4.1	Tuned	frequency
4.2	Encyption	Key
4.3	Transmission	Power

5	The	Emitter
5.1	Wiring
5.2	The	code
5.3	Compile	and	upload
5.4	Running	the	sketch

6	The	Receiver
6.1	Wiring
6.2	The	code
6.3	Compile	and	upload
6.4	Running	the	sketch

7	More	info
7.1	Understanding	sketch	content
7.2	Addressed	&	Reliable	Communication

Forewords
It	is	now	time	to	establish	a	communication	between:

a	Data	Emitter	made	with	a	Feather	M0	Express	+	RFM69HCW-433MHz.
a	Data	Receiver	made	with	the	second	RFM69HCW	that	should	be	linked	to	a	second	micro	controller.

As	the	kit	contains	only	one	micro	controller	(the	Feather	M0	Express),	we	will	use	the	very	common	Arduino	UNO
(not	included)	as	micro	controller	for	the	Data	Receiver.

In	this	simple	exemple:

1.	 The	Data	Emitter	will	send	a	message	and	wait	500ms	for	a	response.
2.	 The	Data	Receiver	will	receive	the	message.
3.	 The	Data	Receiver	will	send	a	reply.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Forewords
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Installing_the_RadioHead_library
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_Antennas
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Frequency.2C_Encryption_.26_Power
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Tuned_frequency
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Encyption_Key
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Transmission_Power
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_Emitter
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_code
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Compile_and_upload
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Running_the_sketch
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_Receiver
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring_2
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_code_2
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Compile_and_upload_2
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Running_the_sketch_2
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#More_info
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Understanding_sketch_content
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Addressed_.26_Reliable_Communication
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-00.jpg

As	we	will	see,	there	are	2	key	items	will	be	highlighted:

1.	 The	frequency	must	be	identical	in	the	emitter	and	receiver	(eg:	433.0	MHz	in	this	example).
2.	 The	encryption	key	must	be	identical	on	the	both	side.

Installing	the	RadioHead	library
If	not	done	yet,	we	will	have	to	install	the	RadioHead	library	in	Arduino	IDE.

That	library	support	lot	of	RFM	modules	including	our	RFM69HCW.

Adafruit	did	fork	the	RadioHead	library	https://github.com/adafruit/RadioHead	and	add	some	useful	sample,	so	we	will	install	the
small|Adafruit's	RadioHead	forked	library.

Download	RadioHead	forked	library
https://github.com/adafruit/RadioHead/archive/master.zip

For	easy	install,	you	can	run	Arduino	IDE	and	open	the	menu	"Sketch	->	Add	a	.ZIP	library..."

Then	pick-up	the	downloaded	RadioHead	ZIP	file.

https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead/archive/master.zip
https://github.com/adafruit/RadioHead/archive/master.zip
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-20.jpg
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-21.png

A	good	idea	would	be	to	rename	the	RadioHead-master.zip	to	RadioHead.zip	before
adding	it	to	Arduino	IDE.

Once	installed	the	RFM69	examples	are	available	from	the	menu	"File	->	Examples".

We	will	focus	our	interest	in	the	following	examples:

File	->	Examples	->	RadioHead	->	Feather	->	RadioHead69_RawDemo_RX
File	->	Examples	->	RadioHead	->	Feather	->	RadioHead69_RawDemo_TX

About	Antennas

The	RFM69HCW	will	not	work	without	antenna,	even	at	1m	distance	of	each
other.

For	this	example,	a	simple	wire	twisted	in	the	antenna	hole	will	do	a	great	job	for	testing.

Please	wait	before	soldering	the	wire	inside	the	antenna	hole!.	The	antenna	hole	can	be	populated	with:

a	simple	wire
a	µFl	SMT	antenna	connector	https://shop.mchobby.be/product.php?id_product=1418	where	you	could	plug	various	kind	of	antenna.
a	PCB	SMA	Connector	https://shop.mchobby.be/product.php?id_product=1419	where	you	could	plus	various	kind	of	antenna.

The	antenna	design	is	a	key	feature	to	ensure	a	reliable	communication	over	a	long	distance.

A	µFl	connector	(also	named	uFl)	is	looking	to	this:

A	PCB	SMA	Connector	is	looking	to	this:

Frequency,	Encryption	&	Power

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-22.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png
https://shop.mchobby.be/product.php?id_product=1418
https://shop.mchobby.be/product.php?id_product=1419
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-uFL-connector.jpg
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-SMA-connector.jpg

To	make	the	module	communicating	together:

The	module	must	be	identical.	You	cannot	mix	them.
The	tuned	frequency	must	be	identical.
The	encryption	key	must	be	identical.

Tuned	frequency

The	tuned	frequency	is	declared	with	a	line	like	this:

#define	RF69_FREQ	433.0

...

if	(!rf69.setFrequency(RF69_FREQ))	{
				Serial.println("setFrequency	failed");
}

where	the	tuned	frequency	is	declared	with	the	constant	RF69_FREQ.

Use	the	frequency	assigned	to	your	team	by	the	instructor.

In	packet	radio,	several	teams	can	share	the	same	frequency	if	they	use	distinct	encryption	key.

Like	TCP	(from	TCP/IP	network),	the	packet	radio	is	able	to	detect	packet	colission	try	to	recover	from	it.

However,	more	teams	share	the	same	frequency,	more	collision	we	have.

Encyption	Key

The	module	encrypts	the	data	with	AES-128.

The	encryption	key	is	defined	into	the	following	lines.

//	The	encryption	key	has	to	be	the	same	as	the	one	in	the	server
uint8_t	key[]	=	{	0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08,
																		0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08};
rf69.setEncryptionKey(key);

It	is	highly	recommended	for	each	team	to	define	its	own	encryption	key.

When	all	the	teams	do	use	the	same	frequency	and	the	same	key	then	they	will	all	receives	the	messages	from
the	other	teams	sending	messages.	Your	messages	will	also	been	received	by	all	the	other	teams.

Transmission	Power

The	transmission	power	is	set	with	the	function	call.

The	range	of	power	is	14	to	20	(in	dBi).	Lowest	values	requires	less	power.	Means	higher	battery	life	but	also	smaller
transmission	distance.

rf69.setTxPower(20,	true);

Notice:	the	second	parameter	concerns	the	HCW	radio	modules	and	indicates	that	extra	amplifier	is	present.

The	Emitter
We	will	prepare	our	message	emitter,	typically	stored	inside	the	CanSat	can.

This	will	involve:

The	Feather	M0	Express	plateform
One	of	the	RFM69HCW	433	Mhz	module
An	wire	antenna

To	ease	the	learning,	we	will	also	connect	the	Feather	to	the	computer	to	spy	the	emitted	messages	(which	implies
additional	code	to	activate	the	serial	port.

Wiring

https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

Feather	M0	Express RFM69
3V VIN
GND GND
MO MOSI
MI MISO
SCK SCK
6 CS
9 G0
10 RST

The	code

Now	we	will	load	the	emitter	example	code	from	the	RadioHead	Library.

Load	the	sketch	file	->	Examples	->	RadioHead	(or	RadioHead-master)	->	feather	->
RadioHead69_RawDemo_TX

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Wiring-Feather-v2.jpg

We	will	have	to	modify	the	code	before	uploading	it	to	the	Feather	M0
Express!

Indeed,	the	example	code	is	provided	for	the	Feather	M0	and	not	the	Feather	M0	Express	so	we	will	have	to	adapt
the	used	pinout	because	pins	3,4	and	8	are	not	available	on	the	Feather	M0	Express.

Update	for	Interface:

Locate	the	following	lines	in	the	code:

#if	defined(ARDUINO_SAMD_FEATHER_M0)	//	Feather	M0	w/Radio
		#define	RFM69_CS						8
		#define	RFM69_INT					3
		#define	RFM69_RST					4
		#define	LED											13
#endif

and	change	it	as	follow	("Feather	M0	Express"	it	is	still	the	a	"Feather	M0"	plateform):

#if	defined(ARDUINO_SAMD_FEATHER_M0)	
		//	UPDATE	for	Feather	M0	EXPRESS	with	RFM69HCW	radio	module
		//	G0	is	the	Radio	Module	interrupt	pin
		#define	RFM69_CS						6
		#define	RFM69_INT					9	
		#define	RFM69_RST					10
		#define	LED											13
#endif

Update	for	frequency	plan:

The	RFM69HCW	exists	in	2	flavor:

900	MHz	for	United	State	usage	(with	a	green	dot)
433	Mhz	for	"Europe"	license-free	ISM	usage	(with	a	red	dot).

The	code	is	the	same	for	the	both	flavor,	you	must	indicates	the	right	frequency	according	to	the	module	you	have.
Trying	to	generate	900Mhz	signal	on	a	433Mhz	would	result	in	"nothing	generated"!

The	RFM69HCW	433Mhz	can	generate	signal	from	424	Mhz	to	510	Mhz	(see	datasheet	https://cdn-shop.adafruit.com/product-
files/3076/sx1231.pdf).	You	have	to	select	the	Frequency	accordingly	to	the	authorised	Frequency	Plan	and	Radio	License.
The	433	Mhz	is	free	for	use,	please	select	your	own	frequency	in	that	range.

Locate	the	following	lignes:

//	Change	to	434.0	or	other	frequency,	must	match	RX's	freq!
#define	RF69_FREQ	915.0

And	update	it	to:

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-22.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf

//	Change	to	434.0	or	other	frequency,	must	match	RX's	freq!
#define	RF69_FREQ	433.0

Activate	the	Serial	Line:

The	begin	of	the	setup()	function	does	contains	the	following	lines.

void	setup()	
{
		Serial.begin(115200);
		//while	(!Serial)	{	delay(1);	}	//	wait	until	serial	console	is	open,	remove	if	not	tethered	to	computer

Update	it	and	remove	the	comment	mark	in	the	front	of	the	while	loop	like	showed	here	under.

void	setup()	
{
		Serial.begin(115200);
		while	(!Serial)	{	delay(1);	}	//	wait	until	serial	console	is	open,	remove	if	not	tethered	to	computer

This	way,	the	Feather	will	wait	for	the	"serial	monitor"	to	be	open	before	starting	the	sketch.

This	while	loop	is	important	otherwise,	none	of	the	serial.print()	would	be	visible	in	the	serial	monitor.

Voilà,	We	are	ready	to	compile	and	upload.

Compile	and	upload

Select	the	proper	board	in	the	menu	Tools	->	Type	of	board	:	Adafruit	Feather	M0	Express

Select	the	proper	port	in	the	menu	Tools	->	Port

Then	press	the	"compile"	button.

If	you	add	trouble	to	flash	the	Feather,	you	can	still	activate	manually	the	boot
mode	by	double	pressing	the	reset	button	before	compiling	the	sketch.

Running	the	sketch

Now	open	the	Serial	Monitor	and	set	the	baud	rate	to	115200	baud.

As	there	is	no	board	listening	and	answering,	you	should	see	the	following	results	on	the	screen.

Later,	when	the	the	receiver	would	be	ready,	the	message	will	turn	from	"Is	another	RFM69	Listening?"	to	"Got	reply:"

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-25.png

The	Receiver
Now	we	will	prepare	our	receiver	station.

The	receiver	stays	on	the	ground	and	receive	the	messages	sent	by	the	Emitter	and	forward	them	to	a	computer.

This	will	involve:

The	second	RFM69HCW	433	Mhz	module
An	arduino	compatible	microcontroler	(we	selected	an	Arduino	Uno)
A	computer	to	read	the	messages
An	wire	antenna

Wiring

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-26.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Wiring-Arduino.jpg

Feather	M0	Express RFM69
5V VIN
GND GND
11 MOSI
12 MISO
13 SCK
4 CS
3 G0
2 RST

The	code

Now	we	will	load	the	receiver	example	code	from	the	RadioHead	Library.

Load	the	sketch	file	->	Examples	->	RadioHead	(or	RadioHead-master)	->	feather	->
RadioHead69_RawDemo_RX

We	will	have	to	modify	the	code	before	uploading	it	to	the	Arduino	Uno!

Update	for	Interface:

No	update	are	required	for	the	interface	as	we	the	following	the	wiring	for	ATmega328P:

#if	defined	(__AVR_ATmega328P__)		//	Feather	328P	w/wing
		#define	RFM69_INT					3		//	
		#define	RFM69_CS						4		//
		#define	RFM69_RST					2		//	"A"
		#define	LED											13
#endif

Update	for	frequency	plan:

The	frequency	used	by	the	receiver	RFM69HCW	must	be	exactly	the	same	as	th	emitter!	z	is	free	for	use,	please	select
your	own	frequency	in	that	range.

Locate	the	following	lignes:

//	Change	to	434.0	or	other	frequency,	must	match	RX's	freq!
#define	RF69_FREQ	915.0

And	update	it	to:

//	Change	to	434.0	or	other	frequency,	must	match	RX's	freq!
#define	RF69_FREQ	433.0

Activate	the	Serial	Line:

No	need	to	change	here	as	we	are	using	an	Arduino	UNO.

Voilà,	We	are	ready	to	compile	and	upload.

Compile	and	upload

Select	the	proper	board	in	the	menu	Tools	->	Type	of	board	:	Arduino/Genuino	UNO

Select	the	proper	port	in	the	menu	Tools	->	Port

Then	press	the	"compile"	button.

Running	the	sketch

Now	open	the	Serial	Monitor	and	set	the	baud	rate	to	115200	baud.

As	we	did	already	started	the	"emitter"	board,	the	receiver	board	will	immediately	display	the	received	message	and
sends	replies.

https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

The	Serial	Console	also	displays	the	RSSI	which	indicates	the	quality	of	the	radio	signal	(-15	is	the	best	signal	we	could
have,	-60	as	displayed	on	the	screen	is	a	really	bad	signal).

More	info
Understanding	sketch	content

Reading	the	sketch	would	help	to	understand	how	the	code	works.

Those	Adafruit	examples	codes	are	also	documented	on	the	on	this	page	of	the	Adafruit	Learning	System
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/using-the-rfm69-radio#setup-9-36	.

Addressed	&	Reliable	Communication

More	complex	setup	could	used	addressed	communication	and	Reliable	Datagram.

Addressed	communication	allows	you	to	associate	a	unique	identifier	(an	integer	value)	to	each	RFM69	module.
This	allows	detect	the	sender	when	receiving	a	message	on	the	frequency	and	to	act	properly.
Reliable	Datagram	do	a	lot	of	management	with	connection	to	make	sure	that	the	packets	were	received.	You	do
not	have	have	to	send	the	acknowledgement	in	your	code,	the	Reliable	Datagram	take	care	of	it	for	you.

The	RadioHead	library	contains	the	examples	RadioHead69_AddrDemo_RX	and	RadioHead69_AddrDemo_TX	that
demonstrate	the	adressed	and	reliable	communication.	See	the	Addressed	RX	and	TX	Demo	https://learn.adafruit.com/adafruit-
rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/using-the-rfm69-radio#addressed-rx-and-tx-demo-9-50	on	the	Adafruit's	learning	system.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-30.png
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/using-the-rfm69-radio#setup-9-36
https://learn.adafruit.com/adafruit-rfm69hcw-and-rfm96-rfm95-rfm98-lora-packet-padio-breakouts/using-the-rfm69-radio#addressed-rx-and-tx-demo-9-50

Onboard	NeoPixel

Sommaire
1	What	are	NeoPixels?

1.1	Feather	M0	NeoPixel
2	Installing	the	library
3	Test	script

What	are	NeoPixels?
NeoPixel	is	a	brand	from	Adafruit	Industries.	It	concerns	individually	addressable	LEDs	that	can	be	controlled	with	a
single	data	line.	Individually	addressable	means	that	you	can	control	the	color	of	each	LED	independently	of	the	other.

NeoPixel	are	usually	sold	in	strand	but	is	also	very	popular	is	various	form-factor.

The	NeoPixels	contains	a	small	microcontroller	used	to	decode	the	information	send	on	the	Data	Line	and	using	PWM
generator	to	drive	the	LEDs.

It	also	include	a	constant	current	supply	for	the	LED,	which	means	that	the	color	would	not	change	with	the	supply
voltage.

NeoPixel	is	a	very	powerful	technology.	You	can	learn	more	about	it	from	the	Adafruit's	neoPixel	User	Guide
https://learn.adafruit.com/adafruit-neopixel-uberguide	or	the	translated	NeoPixel	user	guide.

Feather	M0	NeoPixel

The	Feather	M0	Express	also	contains	a	NeoPixel	LED.	This	LED	is	used	by	the	Microcontroller	to	inform	the	user
about	its	running	status	(red	or	green).

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#What_are_NeoPixels.3F
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Feather_M0_NeoPixel
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Installing_the_library
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Test_script
https://wiki.mchobby.be/index.php?title=Fichier:NeoPixel-UserGuide-21.jpg
https://wiki.mchobby.be/index.php?title=Fichier:NeoPixel-UserGuide-01.jpg
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://wiki.mchobby.be/index.php?title=NeoPixel-UserGuide

The	great	thing	about	this	NeoPixel	is	that	we	can	take	the	control	of	it	from	your	Arduino	sketch.

We	just	need	to	know	the	pin	to	use	(pin	8)	and	install	the	Adafruit	NeoPixel	Library	for	ATSAMD21	microcontroller	:-)

The	NeoPixel	should	be	viewed	as	the	very	first	LED	of	a	NeoPixel	Strand	having	only	one	single	LED.

Installing	the	library
You	can	also	use	the	"Library	Manager"	to	ease	the	installation	of	the	BMP280	library.

From	the	"Sketch"	menu,	select	the	sub-menu	"Include	library"	-->	"Library	Manager"	like	shown	on	the	picture
here	under.

In	the	library	manager,	key-in	the	value	"neopixel"	in	the	search	box.	Then	click	on	the	install	button	in	the	front	of	the
Adafruit	DMA	NeoPixel	Library	by	Adafruit.	This	library	is	suited	for	the	ATSAMD21	microcontroller	as	used	on	this
Feather	M0	plateform.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-CAPTURE-10.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-00.png

Test	script
The	following	script	demonstrate	how	to	manipulate	the	onboard	NeoPixel.

As	there	is	only	one	pixel	(one	pixel	on	the	strand),	the	function	pixel.setPixelColor()	will	always	have	the	first
parameter	is	set	to	0!

This	means	that	we	change	the	color	of	the	LED	#0	on	the	pixel	strand.

#include	<Adafruit_NeoPixel.h>

#define	NEOPIXEL							8
#define	NUMPIXELS						1

Adafruit_NeoPixel	pixel	=	Adafruit_NeoPixel(NUMPIXELS,	NEOPIXEL,	NEO_GRB	+	NEO_KHZ800);

void	setup()	{
		pixel.begin();
		//	switch	OFF	the	pixel	0
		pixel.setPixelColor(0,	pixel.Color(0,0,0));	
		pixel.show();
}

int	red	=	0;
int	green	=	0;
int	blue	=	0;

void	loop(){
		pixel.setPixelColor(0,	pixel.Color(red,green,blue));
		pixel.show();
		red	+=	10;
		if(red	>	255){
				red	=	0;
				green	+=	10;
		}
		if(green	>	255){
				green	=	0;
				blue	+=	10;
		}
		if(blue	>	255){
				blue	=	0;
		}
		//	Wait	100ms
		delay(100);
}

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-NEOPIXEL-20.png

Frequency	Plan
Forewords
The	RFM69	module	and	Packet	Radio	can	do	a	lot	to	secure	message	transmission	and	message	content	(with	the
encryption	key).

As	for	wired	network	(aka	TCP/IP)	the	packet	radio	enclose	your	data	into	datagram	before	sending	it	over	the	air.	This
helps	the	hardware	to	detect	error	and	possibly	recover	when	collisions	occurs.

Obviously,	more	we	are	talking	on	a	same	frequency,	more	we	will	have	collision,	less	the	communication	will	be
efficient.

The	best	solution	would	be	to	use	a	frequency	plan	where	each	team	receives	its	own	frequency	range	like	showed	in
the	following	table.

Suggested	Frequency	Plan
Together	with	the	attributed	Frequency,	we	do	recommend	the	Teams	to	define	their	own	encryption	KEY	for	radio
transmission	(this	will	be	clarified	further	in	the	documentation).

Team Freq	(MHz) Team	name
Team	#1 433.1 .																																																																																																																														.
Team	#2 433.2 	
Team	#3 433.3 	
Team	#4 433.4 	
Team	#5 433.5 	
Team	#6 433.6 	
Team	#7 433.7 	
Team	#8 433.8 	
Team	#9 433.9 	
... 434.0 ...

Frequency	plan	explained
Why	do	we	space	the	frequencies	of	0.1	MHz	(so	100	KHz)?	Spacing	more	(>100	KHz)	will	be	best,	spacing	less	(<100
KHz)	is	not	recommended.

The	following	capture	coming	from	USA	shows	the	spectrum	view	(and	waterfall	view)	of	a	RFM69	emiting	on	the	868.0
MHz	frequency.	Just	remember	that	it	works	the	same	for	CanSat	around	the	433	Mhz.

Note:	the	868.0	Mhz	is	a	FREE	ISM	band	in	USA.	In	Europe,	that	frequency	range	is
reserved	for	LoRa	transmission!

Source:	this	thread	in	the	mysensors.org	forum	https://forum.mysensors.org/topic/11501/rfm69-range-issues

This	second	capture	does	focus	on	the	interesting	part	of	the	picture	(spectrum	around	868	Mhz	and	corresponding
waterfall).

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-FREQUENCY-PLAN-10.png
https://forum.mysensors.org/topic/11501/rfm69-range-issues

Source:	this	thread	in	the	mysensors.org	forum	https://forum.mysensors.org/topic/11501/rfm69-range-issues

As	you	can	see,	the	transmission	does	take	place	on	the	right	and	left	side	around	the	central	868.0	MHz	axis.	A	bit	like
a	mirroring	image.	This	is	called	"Double	Side	Band"	(DSB)	communication	in	the	radio	area	with	the	carrier
wavelength	set	to	868.0	Mhz.

The	carrier	wavelength	doesn't	ship	any	data/information	(no	peak	in	that	position)
since	the	"Double	Side	Bands"	are	enough	to	rebuild	the	transmited	information.

By	comparing	the	spectrum	and	waterfall	(on	the	right	part),	we	can	see	the	communication	take	places	between	868.0
MHz	and	868.030	MHz.	This	is	the	same	on	the	opposite	side	of	the	picture.

So	RFM69	Packet	radio	transmission	takes	place	between:

Carrier	WaveLength	+	30	KHz
Carrier	WaveLength	-	30	KHz

So	a	total	of	60	KHz	around	the	carrier	Wave	length.

the	waterfall	section	does	show	some	activities	over	30	KHz	which	is	flooded	inside
the	noise	(no	real	peak	visible	on	the	spectrum).	It	is	probably	some	radio	emiting
harmonics.

So,	with	the	starting	Carrier	Frequency	=	433.1	MHz,	we	would	have	the	following	unperfect	series:	433.1,	433.16,
433.22,	433.28,	and	so	on.	This	proposal	is	unperfect	because	the	transmission	spectrums	of	the	proposed	frequencies
are	just	"touching"	each	other.

The	best	would	be	to	keep	some	room	between	the	transmissions	spectrums,	so	we	could	space	the	frequencies	of	80
KHz	or	even	better	and	simplier	100	KHz!

So	the	suggested	frequency	plan	is	433.1,	433.2,	433.3,	433.4,	433.5,	and	so	on.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-FREQUENCY-PLAN-11.png
https://forum.mysensors.org/topic/11501/rfm69-range-issues

Mission	1	-	the	Emitter

Sommaire
1	Introduction
2	Wiring

2.1	Wire	the	barometric	sensor
2.2	Wire	the	temperature	sensor
2.3	Wire	the	radio	module

3	Download	the	code
4	About	testing
5	Structuring	the	data
6	LEDs	and	Error	management
7	The	code	explained
8	Fault	tolerant	design

Introduction

Before	starting	this	point,	we	recommand	to	follow	all	the	sensors	testing	steps
(BMP280	sensor,	TMP36	Sensor,	RFM69HCW	radio,	RFM69HCW	Testing	and
onboard	NeoPixel).	It	contains	all	the	details	about	the	wiring,	install	needed
libraries	and	conduct	basic	testing.

The	following	Wiring	is	used	to	capture

Air	temperature
Air	pressure

and	transmitting	the	information	via	the	RFM69HCW	radio	module.

Wiring
Wire	the	barometric	sensor

The	BMP280	is	wired	on	the	I2C	bus	of	the	Feather.

Wire	the	temperature	sensor

Then	connect	the	TMP36	sensor	as	follows:

The	pin	1	(on	the	left)	to	a	power	source	(3.3V),
The	pin	3	(the	the	right	droite)	to	the	ground/GND.
The	pin	2	(middle	one)	to	the	A3	analogue	input.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wire_the_barometric_sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wire_the_temperature_sensor
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wire_the_radio_module
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Download_the_code
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_testing
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Structuring_the_data
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#LEDs_and_Error_management
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_code_explained
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Fault_tolerant_design
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-BMP280-wiring.png

Wire	the	radio	module

Finally	wire	the	RFM69HCW	radio	as	follows:

Feather	M0	Express RFM69
3V VIN
GND GND
MO MOSI
MI MISO
SCK SCK
6 CS
9 G0
10 RST

Download	the	code
The	code	is	available	for	download	on	the	GitHub	associated	to	this	wiki	https://github.com/mchobby/cansat-belgium	.

Téléchargez	mission1-serial-radio-
capture.ino

https://raw.githubusercontent.com/mchobby/cansat-
belgium/master/mission1-serial-radio-capture/mission1-serial-

radio-capture.ino

About	testing
Now,	we	will	move	forward	in	several	steps.

1.	 Getting	data	from	sensors	+	send	them	it	over	the	serial	connexion	(to	confirm	good	working)	+	transmit	over
radio

2.	 Testing	the	radio	reception
3.	 Going	autonomous	(removing	Serial	Connexion	waiting)	+	add	the	Lipo

The	code	proposed	here	under	has	been	tested	up	to	23197	iterations	without	issue,	time	when	we	decided	to	ends	the
test	:-)	.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-TMP36-01.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Wiring-Feather.jpg
https://github.com/mchobby/cansat-belgium
https://raw.githubusercontent.com/mchobby/cansat-belgium/master/mission1-serial-radio-capture/mission1-serial-radio-capture.ino
https://raw.githubusercontent.com/mchobby/cansat-belgium/master/mission1-serial-radio-capture/mission1-serial-radio-capture.ino

Once	uploaded	to	your	Feather,	open	the	Serial	Monitor	and	set	it	to	9600	bauds.	The	sketch	would	wait	until	you
open	the	Serial	Monitor	to	start	transmitting	the	data.

You	should	see	the	following	messages	appears	on	the	Serial	Monitor.

Where	we	could	see	the	transmitted	messages	with	the	packetnum	packet	index,	timing	and	data.

The	screen	also	displays	the	ACK	acknowledgement	send	back	by	the	receiver.

Structuring	the	data
The	radio	module	only	sends	buffer	of	binary	data	to	the	receiver.	This	is	a	bit	rough	but	efficient.

So	to	transport	the	data	to	the	receiver,	we	need	to	transform	the	values	(float,	integer)	into	their	string	representation.

When	having	multiple	data	in	their	string	representation	is	not	enough,	they	must	also	been	organized.

The	final	format	must	be	easy	to	parse	and	very	compact	(smaller	is	the	radio	message	and	higher	is	the	chance
for	him	to	get	to	the	ground	without	error).

We	propose	the	following	format:

:data1|data2|data3|data4;/r/n

where:

:	is	the	begin	of	data	stream
;	is	the	end	of	data	stream
/r/n	are	optional	carriage	return	+	line	feed	characters.
This	will	would	make	the	messages	user	friendly	when	the	the	messages	are	viewed	in	a	console	or	terminal.
|	is	the	separator	between	data	items.
datax	are	the	string	representation	of	the	various	data.	The	characters	;:|	are	forbidden	in	this	area.

we	would	also	recommend	to	use:

packetnum	as	data1.	packetnum	is	a	simple	variable	increment	of	one	unit	after	each	transmission.	This	would
allow	the	receiver	to	detect	lost	message	(since	it	would	exist	holes	in	the	numbering	of	received	messages).
timing_info	as	data2.	This	would	help	to	create	timing	chart	or	time	base	data	analysis.	We	suggest	to	use	the
Arduino's	millis()	function	which	count	the	number	of	milliseconds	since	the	last	microcontroler	reset.

As	explained	later	in	the	code	the	packet_str	variable	contains	the	message	to	be	transmitted	to	the	ground.	The
Arduino's	String	class	would	ease	the	transformation	of	data	to	their	string	representation.

String	packet_str	=	String(":"+String(packetnum,DEC)+"|");
packet_str.concat(String(ms,DEC)+"|");
packet_str.concat(String(temperature,	2)+"|");
packet_str.concat(String(bme_hpa,	2)+"|");
packet_str.concat(String(bme_temp,	2)+";\r\n");

LEDs	and	Error	management
Being	able	to	understand	rapidly	what's	happening	inside	your	object	is	essential	to	rapidly	fix	the	issue.

The	best	is	to	figure	out	what's	happening	is	to	use	LED,	blink	status,	heartbeat.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-CAPTURE-20.png

By	doing	so,	no	need	to	open	a	Serial	Monitor	or	diagnostic	tool	to	figure	out	the	status	of	the	object.

The	NeoPixel	LED	does	turn	GREEN	when	the	Feather	M0	switch	on	to	normal	operation	(when	it	runs	your	Arduino
Sketch).

In	the	following	sample,	we	do	take	the	control	over	the	NeoPixel	LED	to	switch	it	off	at	the	end	of	setup()	function.
This	means	that	all	buses	and	devices	are	properly	initialized.

The	RADIO_LED	wired	on	the	Pin	13	is	used	to	signal	radio	status	when	emitting	a	message.

LED	operation Description Fix	the	issue

NeoPixel	GREEN The	setup()	function	did	not	complete	initialization
because	of	a	crash.

Check	the	wiring	of	sensors.	Test	each	sensor	separately	(with
their	tests	code).	If	this	not	working,	remove	all	sensors	except
the	one	you	are	testing.

NeoPixel	OFF The	setup()	did	complete	successfully.	The	main
loop()	is	not	running.

Nothing	to	do	here,	just	check	the	RADIO_LED	for	more
informations.

RADIO	LED	=	1
pulse	50ms

The	LED	is	pulsed	for	each	successfully	send
message	+	getting	ACK	from	the	receiver.	The	code
wait	500ms	max	for	the	ACK.

Nothing	to	do	here.

RADIO	LED	=	2
pulse	50ms	+
pause	100ms

Message	send	but	error	while	decoding	the	ACK
response.

This	is	not	critical,	the	most	important	is	that	the	message	was
sent	successfully.

RADIO	LED	=	3
pulse	50ms	+
pause	150ms

Not	ACK	message	received	within	the	500ms	after
message	was	sent.
This	can	be	interpreted	as	"Is	there	someone
listening	the	message?"	because	there	are	not	reply.

This	is	not	critical,	the	most	important	is	that	the	message	was
sent	successfully.

The	code	explained
Here	some	explanation	about	the	{fname|mission1-serial-radio-capture.ino}}	sketch	used	in	the	CanSat.

This	Arduino	sketch	would:

1.	Wait	for	the	serial	connexion	to	be	established	before	starting	the	sketch
2.	 Collect	the	sensor	data
3.	 Send	it	to	serial	connexion
4.	 Send	it	over	the	radio	connexion

Don't	forget	to	update	the	radio	frequency	RF69_FREQ	and	the	encryption	key	key[]

First,	the	script	will	includes	all	the	needed	libraries.

#include	<Wire.h>
#include	<SPI.h>
#include	<Adafruit_Sensor.h>
#include	<Adafruit_BMP280.h>
#include	<Adafruit_NeoPixel.h>
#include	<RH_RF69.h>

Then,	it	defines	the	parameters	for	the	radio	module	and	the	pinout	used	to	wire	the	RFM69HCW	radio	module	to	the
Feather	M0.

The	last	line	create	the	object	rf69	to	control	the	module.

#define	RF69_FREQ	433.0

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-CAPTURE-10.png

		
#define	RFM69_CS						6
#define	RFM69_INT					9	
#define	RFM69_RST					10
#define	RADIO_LED					13

RH_RF69	rf69(RFM69_CS,	RFM69_INT);

Defining	the	parameters	to	control	the	NeoPixel	LED	available	on	the	board.	That	LED	is	wired	on	the	Pin	8.

The	last	line	creates	an	objet	pixel	which	is	a	Pixels	Strand	of	only	1	pixel	length.

#define	NEOPIXEL							8
#define	NUMPIXELS						1

Adafruit_NeoPixel	pixel	=	Adafruit_NeoPixel(NUMPIXELS,	NEOPIXEL,	NEO_GRB	+	NEO_KHZ800);

Defining	the	parameter	and	objects	for	temperature	and	pressure	sensor.

#define	temperaturePin	A3	

Adafruit_BMP280	bme;	//	wired	with	I2C

Initialize	the	serial	connexion	@	9600	bauds,	the	BMP	sensor,	the	radio	module	(init_radio_module())	and	pixel.

The	while(!Serial)	waits	that	you	open	the	serial	monitor	so	effectively	starts	the	sketch.

The	NeoPixel	is	turned	when	the	setup()	function	is	complete.

		
void	setup()	{
		Serial.begin(9600);

		//	wait	until	serial	console	is	open
		while	(!Serial)	{	delay(1);	}	
	
		if	(!bme.begin())	{		
				Serial.println("Could	not	find	a	valid	BMP280	sensor,	check	wiring!");
				while	(1);
		}

		init_radio_module();

		//	everything	is	right!	So	switch	off	neopixel
		pixel.begin();
		pixel.setPixelColor(0,	pixel.Color(0,0,0));	//	switch	off
		pixel.show();
}

Now,	we	can	focus	on	the	main	loop.

The	first	step	is	to	send	the	column	header	(so	we	know	what	are	the	data)	if	not	done	yet.

Then	we	reads	the	sensors	(as	we	have	tested	them,	this	should	not	be	a	surprise).	We	also	capture	the	time	with	the
function	millis(),	so	the	ms	variable	contains	the	number	of	milliseconds	since	the	last	reset.

Finally,	we	do	increment	the	packetnum	variable.	This	would	allows	to	track	lost	packets	on	the	receiver	side.

packet_str	is	the	message	to	send	via	radio.	It	is	composed	with	String	objects	and	concatenation	operations.	String
are	welcome	to	transform	float	into	string	representation	since	most	common	float	to	string	C	standard	functions	would
fail	to	work	properly	onto	Arduino	alike	plateforms.

The	key	function	to	transform	the	String	object'	into	a	C	buffer	is	packet_str.c_str()	which	offer	an	access	to	the
underlying	array	of	bytes	(exactly	what	the	radio	module	library	would	need).

The	remaining	of	the	radio	transmission	code	is	almost	the	same	as	the	RFM69HCW	module	testing	code	(except	that
error	messages	are	remplaced	by	Blinking	LED).

	
bool	header_send	=	false;
//	packet	number	increment	at	each	data	transmission	
int16_t	packetnum	=	0;
void	loop()	{
				//	---	SEND	COLUMNS	HEADER	-------------------
				if(!(header_send)){
								send_header();
								header_send	=	true;
				}	
				
				//	---	READ	SENSORS	---------------------------
				float	voltage	=	getVoltage(temperaturePin);

				float	temperature	=	(voltage	-	.5)	*100;

				float	bme_temp	=	bme.readTemperature();
				float	bme_hpa		=	bme.readPressure();

				unsigned	long	ms	=	millis();
				packetnum	+=	1;	//	increment	

				//	---	Compose	the	Message	to	send	------------
				String	packet_str	=	String(":"+String(packetnum,DEC)+"|");
				packet_str.concat(String(ms,DEC)+"|");
				packet_str.concat(String(temperature,	2)+"|");
				packet_str.concat(String(bme_hpa,	2)+"|");
				packet_str.concat(String(bme_temp,	2)+";\r\n");

				//	send	to	Serial
				Serial.print(packet_str.c_str());
				//	Send	over	Radio
				rf69.send((uint8_t	*)(packet_str.c_str()),	packet_str.length());
				rf69.waitPacketSent();

				//	Now	wait	for	a	reply
				uint8_t	buf[4];	//	We	limit	the	quantity	received	data
				uint8_t	len	=	sizeof(buf);

				if	(rf69.waitAvailableTimeout(500))		{	
						//	Should	be	a	reply	message	for	us	now			
						if	(rf69.recv(buf,	&len))	{
										Serial.print(":	");
										Serial.println((char*)buf);
										Blink(RADIO_LED,	50,	1);	//blink	LED	once,	50ms	between	blinks
						}	else	{
										Serial.println("Receive	failed");
										Blink(RADIO_LED,	50,	1);	//blink	LED	once,	50ms	between	blinks
						}
				}	else	{
								Serial.println("No	reply,	is	another	RFM69	listening?");
								Blink(RADIO_LED,	50,	3);	//	blink	3	times,	50ms	between	blinks
				}

				//	Going	to	next	round
}

The	init_radio_module()	function	is	called	from	the	setup().

This	function	does	all	the	stuff	to	initialize	the	RFM69HCW	modules.	Set	the	transmission	power,	the	frequency	and	the
encryption	key.

	
void	init_radio_module()	{
		pinMode(RADIO_LED,	OUTPUT);					
		pinMode(RFM69_RST,	OUTPUT);
		digitalWrite(RFM69_RST,	LOW);

		Serial.println("Feather	RFM69	TX	Test!");
		Serial.println();

		//	manual	reset
		digitalWrite(RFM69_RST,	HIGH);
		delay(10);
		digitalWrite(RFM69_RST,	LOW);
		delay(10);
		
		if	(!rf69.init())	{
				Serial.println("RFM69	radio	init	failed");
				while	(1);
		}
		Serial.println("RFM69	radio	init	OK!");
		//	Defaults	after	init	are	434.0MHz,	modulation	GFSK_Rb250Fd250,	+13dbM	(for	low	power	module)
		//	No	encryption
		if	(!rf69.setFrequency(RF69_FREQ))	{
				Serial.println("setFrequency	failed");
		}

		//	If	you	are	using	a	high	power	RF69	eg	RFM69HW,	you	*must*	set	a	Tx	power	with	the
		//	ishighpowermodule	flag	set	like	this:
		rf69.setTxPower(20,	true);		//	range	from	14-20	for	power,	2nd	arg	must	be	true	for	69HCW

		//	The	encryption	key	has	to	be	the	same	as	the	one	in	the	server
		uint8_t	key[]	=	{	0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08,
																				0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08};
		rf69.setEncryptionKey(key);
		
		pinMode(RADIO_LED,	OUTPUT);

		Serial.print("RFM69	radio	@");
		Serial.print((int)RF69_FREQ);
		Serial.println("	MHz");
}

This	function	send	the	header	information	to	the	Serial	monitor.

Ideally,	this	function	should	also	send	it	via	the	radio.

void	send_header()	{
		String	s1	=	String(F("***HEADER***\r\n"));
		Serial.print(s1);
		String	s2	=	String(F(":counter|time_ms|temperature|pressure_hpa|temp2;\r\n"));
		Serial.print(s2);
		String	s3	=	String(F("***DATA***\r\n"));
		Serial.print(s3);
		
}

Helper	function	used	to	blink	a	LED.	Note	that	a	pause	of	3	time	the	blinking	time.	This	will	ease	the	identification	of
blink	code	into	other	blinking	patterns.

void	Blink(byte	PIN,	byte	DELAY_MS,	byte	loops)	{
		for	(byte	i=0;	i<loops;	i++)		{
				digitalWrite(PIN,HIGH);
				delay(DELAY_MS);
				digitalWrite(PIN,LOW);
				delay(DELAY_MS);
		}
		//	exit:	wait	3	times	the	delay
		delay(3*	DELAY_MS);
}

This	function	returns	the	voltage	for	the	analog	Pin.

It	converts	a	digital	value	between	0	&	1024	(from	ADC)	to	voltage	between	0	&	3.3	volts.

float	getVoltage(int	pin){
			//		each	unit	equal	3.3	/	1024	=	3.2	millivolts
			return	(analogRead(pin)	*	.0032);
}

Fault	tolerant	design
The	goal	is	to	transmit	the	data	to	the	ground	station.
The	code	of	the	Emitter	(this	section)	and	Receiver	(next	section)	are	doing	the	job.

However,	what	would	happens	to	your	data	if	the	antenna	did	break?	All	the	data	are	lots!

This	is	where	the	"Extra	Flash"	would	be	a	great	help!

As	showed	earlier,	it	is	also	possible	to	store/save	the	data	into	the	Flash.

A	good	approach	would	be:

1.	 to	save	the	data	in	the	Flash
2.	 then	send	it	over	Radio.

In	this	way,	the	data	stays	available	inside	the	CanSat	and	could	be	extracted	as	suited.

Mission	1	-	the	Receiver

Sommaire
1	Introduction
2	Wiring
3	Download	the	code
4	About	testing
5	The	code	explained
6	Compile	and	upload
7	Capturing	data	to	file

7.1	Putty
7.2	Linux	command
7.3	With	Python
7.4	Other	options

Introduction
The	following	wiring	will	prepare	the	"Receiver	Station"	for	the	mission	1.	From	the	"RFM69HCW	Testing"	section,	we
will	use	an	Arduino	UNO	and	RFM69HCW	module	to	redirect	the	Radio	Messages	to	the	serial	port.

Wiring

Feather	M0	Express RFM69
5V VIN
GND GND
11 MOSI
12 MISO
13 SCK
4 CS
3 G0
2 RST

Download	the	code
The	code	is	available	for	download	on	the	GitHub	associated	to	this	wiki	https://github.com/mchobby/cansat-belgium	.

Téléchargez	mission1-serial-radio-

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Wiring
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Download_the_code
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_testing
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#The_code_explained
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Compile_and_upload
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Capturing_data_to_file
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Putty
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Linux_command
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#With_Python
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Other_options
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Wiring-Arduino.jpg
https://github.com/mchobby/cansat-belgium
https://raw.githubusercontent.com/mchobby/cansat-belgium/master/mission1-serial-radio-receiver/mission1-serial-radio-receiver.ino

receiver.ino
https://raw.githubusercontent.com/mchobby/cansat-

belgium/master/mission1-serial-radio-receiver/mission1-serial-
radio-receiver.ino

About	testing
Once	uploaded	to	your	Arduino,	open	the	Serial	Monitor	and	set	it	to	115200	bauds.

You	should	see	the	following	messages	appears	on	the	Serial	Monitor.

Where	we	could	see	the	received	messages	with	additional	information.

[DATA](len=<data_len>,RSSI=<radio_rssi>)<transmitted_data>

Each	data	received	and	send	to	the	serial	connexion	are	prefixed	with	[DATA]
The	prefix	is	followed	by	information	enclosed	between	parenthesis	(),	this	concerns	the	received	data.
Entries	are	key=value	pairs	separated	by	coma.
At	the	end,	we	retrieve	the	transmitted	data	(as	they	have	been	sent).

In	the	informations:

data_len:	length	of	the	data	stream	received.
RSSI:	indicated	the	strength	of	the	signal	https://en.wikipedia.org/wiki/Received_signal_strength_indication	(-15	at	best,	-90	at	worst).
transmitted_data:	the	data	as	transmitted	by	the	emitter.	As	designed	in	the	emitter,	it	starts	with	:	and	ends
with	;\r\n

In	the	transmitted_data,	we	can	identify:

The	packet	counter
The	time	counter	(milliseconds)
The	temperature	(from	tmp36)
The	atmospheric	pressure	(from	bmp280)
The	temperature2	(from	bmp280)

The	code	explained
Here	some	explanation	about	the	mission1-serial-radio-receiver.ino	sketch	used	in	the	CanSat.

This	Arduino	sketch	would:

1.	 Collect	the	sensor	data	over	the	radio	connexion
2.	 Reply	an	ACK	to	the	Emitter
3.	 Send	it	the	data	to	the	serial	connexion

Don't	forget	to	update	the	radio	frequency	RF69_FREQ	and	the	encryption	key	key[]

First,	the	script	will	includes	all	the	needed	libraries.

#include	<SPI.h>
#include	<RH_RF69.h>

https://raw.githubusercontent.com/mchobby/cansat-belgium/master/mission1-serial-radio-receiver/mission1-serial-radio-receiver.ino
https://raw.githubusercontent.com/mchobby/cansat-belgium/master/mission1-serial-radio-receiver/mission1-serial-radio-receiver.ino
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-RECEIVE-20.png
https://en.wikipedia.org/wiki/Received_signal_strength_indication

Then,	it	defines	the	parameters	for	the	radio	module	and	the	pinout	used	to	wire	the	RFM69HCW	radio.	The	code	adapt
himself	to	the	the	board	selected	in	the	compiler.

The	last	line	create	the	object	rf69	to	control	the	module.

#define	RF69_FREQ	433.0

#if	defined	(__AVR_ATmega32U4__)	//	Feather	32u4	w/Radio
		#define	RFM69_CS						8
		#define	RFM69_INT					7
		#define	RFM69_RST					4
		#define	LED											13
#endif

#if	defined(ARDUINO_SAMD_FEATHER_M0)	//	Feather	M0	w/Radio
		#define	RFM69_CS						8
		#define	RFM69_INT					3
		#define	RFM69_RST					4
		#define	LED											13
#endif

#if	defined	(__AVR_ATmega328P__)		//	Feather	328P	w/wing	(or	Arduino	UNO)
		#define	RFM69_INT					3		//	
		#define	RFM69_CS						4		//
		#define	RFM69_RST					2		//	"A"
		#define	LED											13
#endif

#if	defined(ESP8266)				//	ESP8266	feather	w/wing
		#define	RFM69_CS						2				//	"E"
		#define	RFM69_IRQ					15			//	"B"
		#define	RFM69_RST					16			//	"D"
		#define	LED											0
#endif

#if	defined(ESP32)				//	ESP32	feather	w/wing
		#define	RFM69_RST					13			//	same	as	LED
		#define	RFM69_CS						33			//	"B"
		#define	RFM69_INT					27			//	"A"
		#define	LED											13
#endif

//	Singleton	instance	of	the	radio	driver
RH_RF69	rf69(RFM69_CS,	RFM69_INT);

The	setup()	function:

initialize	the	serial	connexion	@	115200	bauds
initialze	the	radio	module

void	setup()	{
		Serial.begin(115200);

		pinMode(LED,	OUTPUT);					
		pinMode(RFM69_RST,	OUTPUT);
		digitalWrite(RFM69_RST,	LOW);

		Serial.println("[INFO]	CanSat	Belgium	Radio	Receiver	(Radio	to	Serial)!");

		//	manual	reset
		digitalWrite(RFM69_RST,	HIGH);
		delay(10);
		digitalWrite(RFM69_RST,	LOW);
		delay(10);
		
		if	(!rf69.init())	{
				Serial.println("[ERROR]	RFM69	radio	init	failed");
				while	(1);
		}
		Serial.println("[INFO]	RFM69	radio	init	OK!");
		
		//	Defaults	after	init	are	434.0MHz,	modulation	GFSK_Rb250Fd250,	+13dbM	(for	low	power	module)
		//	No	encryption
		if	(!rf69.setFrequency(RF69_FREQ))	{
				Serial.println("[ERROR]	setFrequency	failed");
		}

		//	When	using	High	Power	RF69,	RFM69HW	then	the	Tx	power	ishighpowermodule	
		//	flag	MUST	be	with	to	TRUE
		rf69.setTxPower(20,	true);		//	Power	range	14-20

		//	The	encryption	key	has	to	be	the	same	as	the	one	in	the	server
		uint8_t	key[]	=	{	0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08,
																				0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,	0x08};
		rf69.setEncryptionKey(key);
		
		pinMode(LED,	OUTPUT);

		Serial.print("[INFO]	RFM69	radio	@");
		Serial.print((int)RF69_FREQ);
		Serial.println("	MHz");
}

The	main	loop()	function	just	check	if	a	new	message	arrives.

If	so,	it	read	the	message	and	store	it	into	buf	buffer.

Then,	several	Serial.print()	statement	are	used	to	send	the	data	over	the	serial	connexion.

Finally,	the	sketch	sends	an	ACK	confirmation	message.

void	loop()	{
	if	(rf69.available())	{
				//	Should	be	a	message	for	us	now			
				uint8_t	buf[RH_RF69_MAX_MESSAGE_LEN];
				uint8_t	len	=	sizeof(buf);
				if	(rf69.recv(buf,	&len))	{
						if	(!len)	return;
						buf[len]	=	0;
						Serial.print("[DATA](len=");
						Serial.print(len);
						Serial.print(",RSSI=");
						Serial.print(rf69.lastRssi(),	DEC);
						Serial.print(")");
						Serial.print((char*)buf);	//	Data	send	by	remote	is	supposed	to	contains	the	\r\n

						//	Send	a	reply!
						uint8_t	data[]	=	"ACK";
						rf69.send(data,	sizeof(data));
						rf69.waitPacketSent();
						Blink(LED,	50,	1);	//blink	LED	1	times,	50ms	between	blinks
				}
		}
		else	{
				Blink(LED,	50,	3);	//blink	LED	3	times,	50ms	between	blinks
		}
}

The	Blink()	function	is	used	to	signal	error	code	(blink	once	when	a	message	received,	blink	3	times	when	having	a
communication	error).

void	Blink(byte	PIN,	byte	DELAY_MS,	byte	loops)	{
		for	(byte	i=0;	i<loops;	i++)		{
				digitalWrite(PIN,HIGH);
				delay(DELAY_MS);
				digitalWrite(PIN,LOW);
				delay(DELAY_MS);
		}
}

Compile	and	upload
Select	the	proper	board	in	the	menu	Tools	->	Type	of	board	:	Arduino/Genuino	UNO

Select	the	proper	port	in	the	menu	Tools	->	Port

Then	press	the	"upload"	button.

Capturing	data	to	file
Having	data	available	in	the	Arduino	Serial	Monitor	is	great...	but	capturing	it	without	Arduino	would	be	even	better.

Putty

The	putty	software	(available	on	Windows,	Mac,	Linux)	can	be	also	be	used	to	connect	to	the	Arduino	Serial	Port
interface

Here	how	it	should	be	configured	to	capture	the	data.

Putty	also	offers	some	logging	capability	that	may	be	useful.

Linux	command

If	you	are	addict	to	Linux	or	Raspberry-Pi	board	then	you	can	easily	view	and	capture	the	data	with	the	following
commnands.

cat	/dev/ttyACM0	>	output.dat

This	command	will	redirect	the	content	of	the	USB	port	to	a	file	named	output.dat	.

With	Python

The	following	Python	script	will	capture	a	serial	port	(see	baud_rate	variable)	and	write	the	content	to	a	file	(see
write_to_file_path	variable).

The	content	of	the	file	is	reset	when	the	script	is	started.

Openning	the	Serial	Port	will	issue	the	automatic	Reset	feature	of	the
Arduino	board.

import	serial

serial_port	=	'/dev/ttyACM0';
#	depend	on	Serial.begin(baud_rate)	in	Arduino
baud_rate	=	115200;	
write_to_file_path	=	"output.txt";

output_file	=	open(write_to_file_path,	"w+")
ser	=	serial.Serial(serial_port,	baud_rate)
try:
				while	True:
								line	=	ser.readline()
								line	=	line.encode("utf-8")	#ser.readline	returns	a	binary,	convert	to	string
								print(line)
								output_file.write(line)
except	KeyboardInterrupt:
				print('User	abord')
output_file.close()
ser.close()

Other	options

You	may	find	many	other	capture	methods	from	Internet:

Free	Software	available	on	Internet
Source	Code	example	for	your	favourite	programming	language.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-RECEIVE-30.png
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

Mission	1	-	going	autonomous

Sommaire
1	Introduction
2	Removing	the	"Serial	Connection	Wait"
3	Plug	the	battery
4	Conclusion

Introduction
Until	now,	we	have	worked	with	the	emitter	linked	to	a	computer	via	USB	cable.

Using	the	USB	cable	was	very	useful	to	capture	the	debugging	message	into	the	serial	console.

As	designed	in	the	code,	the	Feather	wait	for	the	serial	connexion	to	start	the	software.

This	means	that	you	cannot	make	your	object	flying	into	the	CanSat	without	packing	the	computer	together	with	the
feather	into	the	can...	GLOUPS!!!

Don't	panic,	we	will	solve	this	in	a	minute	;-)

Removing	the	"Serial	Connection	Wait"
The	serial	connection	is	only	useful	when	you	need	to	track	the	debugging	messages	send	by	the	Feather.

As	we	are	going	autonomous...	we	do	not	need	to	wait	for	the	serial	connection	to	be	established.

So	locate	the	following	lines	inside	the	setup()	function	of	your	"mission1-serial-radio-capture.ino"	sketch	(the	emitter
code	running	inside	the	CanSat).

void	setup()	{
		Serial.begin(9600);

		//	wait	until	serial	console	is	open,	remove	if	not	tethered	to	computer
		while	(!Serial)	{	delay(1);	}	
	
		...
}

Then	place	the	while	under	comment	to	disable	it.

Proceed	by	placing	a	//	in	the	front	of	the	while	instruction.

When	done,	the	code	should	look	to	this:

void	setup()	{
		Serial.begin(9600);

		//	wait	until	serial	console	is	open,	remove	if	not	tethered	to	computer
		//	while	(!Serial)	{	delay(1);	}	
	
		...
}

Compile	and	upload	the	modified	version	to	your	Feather.

Great!	You	are	ready.	The	program	would	now	starts	without	waiting	for	the	Serial	Monitor.

Plug	the	battery
It	is	now	time	to	plug	the	Lipo	in	the	appropriate	connector.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Removing_the_.22Serial_Connection_Wait.22
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Plug_the_battery
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Conclusion

When	the	Feather	is	plugged	via	USB:

The	Feather	runs	over	the	USB	power.
The	LiPo	battery	is	loaded	from	the	USB.

When	the	Feather	is	unplugged	from	USB:

The	Feather	is	instantaneously	powered	from	the	LiPo	battery.
The	LiPo	battery	is	now	discharging	to	power	up	the	Feather.

The	feather	will	run	until	the	battery	is	discharged.

At	best,	the	battery	have	4.2V	and	discharge	until	3.0V	(when	LiPo	the	protection	circuit	shutdown	the	power.

The	time	it	takes	to	discharge	depend	on	the	power	requirement	of	your	LiPo.

If	the	LiPo	can	store	2500mAh	and	a	project	requiring	130mA	to	run	will	last	after	2500mAh/130mA	=	19	Hour	of
working.

This	is	an	estimate.	In	real	life,	the	current	sink	by	the	project	is	not	constant	so
energy	is	not	sink	out	constantly	from	the	LiPo.

Conclusion
You	should	now	be	able	to	unplug	the	Feather	from	the	USB	connector	then	still	receive	the	telemetric	data	over	the
air	:-)

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-MISSION1-AUTONOMOUS.png

CanSat	3D

Sommaire
1	Introduction
2	3D	CanSat

2.1	Cansat_BaseModel
2.2	Cansat_1.0
2.3	Cansat_2.0

3	Download	Models

Introduction
The	entire	project	must	fit	into	a	can!	The	size	and	dimensions	are	available	in	CanSat	settlement.

This	page	contains	various	resources	offered	by	contest	participants.

3D	CanSat
One	of	participant	of	the	previous	CanSat	2018	edition	did	share	some	3D	models.

Thank	to	Docopol	from	Institut	Saint	Michel	for	this	contribution.

01/04/2019	:	On	request	of	DESANG	team	of	St	Michel	Institute	of	Bruxelles,
this	3D	model	is	removed	from	the	GitHub!

Cansat_BaseModel

This	is	a	standard	CanSat	accredit	on	required	dimension.

Diameter:	66mm.
Height:	115mm.

The	hook	firmness	is	good	for	the	parachute.

This	can	have	3mm	wall	thickness	which	offer	a	good	balance	between	we	firmness,	available	space	and	weight.

Cansat_1.0

This	modeling	is	an	upgrade	of	the	previous	one.	It	includes	small	edge	to	insert	circular	59mm	PCBs.

This	model	did	fly	at	Elsenborn.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#3D_CanSat
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Cansat_BaseModel
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Cansat_1.0
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Cansat_2.0
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Download_Models
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-3D-11.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-3D-10.png

Cansat_2.0

Composed	of	right	and	left	part,	this	allows	to	use	a	vertical	PCB.

The	PCB	size	is	108mm	height	and	58mm	weight.

An	additional	chamber	can	be	used	as	ballast.	Adding	some	load	may	be	useful	in	some	circumstance.

This	model	have	been	used	for	CanSat	Europe	(Açores).

	

Download	Models
All	the	CanSat	3D	models	(stl	format)	https://github.com/mchobby/cansat-belgium/tree/master/cansat-3d	can	be	downloaded	from	this	sub-
folder	of	the	GitHub.

01/04/2019	:	On	request	of	DESANG	team	of	St	Michel	Institute	of	Bruxelles,
this	3D	model	is	removed	from	the	GitHub!

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-3D-12.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-3D-13.png
https://github.com/mchobby/cansat-belgium/tree/master/cansat-3d
https://wiki.mchobby.be/index.php?title=Fichier:StopHand.png

Radio	Antenna

Sommaire
1	Introduction
2	Antenna	connector
3	Ground	Station	-	Yagi	Antenna

3.1	6	or	11	elements
4	About	Yagi	Antenna

4.1	Radiation	Pattern
4.2	Common	Design
4.3	Needed	Material
4.4	Resource

5	CanSat	and	Antenna
5.1	Quarter	WaveLength	Antenna
5.2	Quarter	WaveLength	&	Polarization
5.3	Other	Antennas

6	7	Rules	for	Radio	Antennas
6.1	What	is	SWR?

7	Getting	Help	from	Radio	Amateur

Introduction
What	ever	you	do,	the	antenna	is	always	one	of	the	most	sensitive	component	when	working	in	the	radio	area.

The	following	schema	shows	how	to	wire	the	RFM69HCW	to	transmit	data.

As	you	can	see,	the	antenna	is	made	of	a	simple	wire.

Remove	the	wire	and	the	data	would	not	transmit	at	1	meter	of	distance,	even	on	the	same	desk!

Remember,	the	antenna	is	the	key	to	transmit	data	over	a	long	distance!

Antenna	connector
The	radio	modules	usually	offer	a	spot	to	solder	antenna.

With	the	RFM69HCW	the	antenna	spot	allow	you	to	connect	an	antenna	in	3	different	ways.

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Antenna_connector
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Ground_Station_-_Yagi_Antenna
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#6_or_11_elements
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#About_Yagi_Antenna
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Radiation_Pattern
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Common_Design
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Needed_Material
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Resource
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#CanSat_and_Antenna
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Quarter_WaveLength_Antenna
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Quarter_WaveLength_.26_Polarization
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Other_Antennas
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#7_Rules_for_Radio_Antennas
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#What_is_SWR.3F
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Getting_Help_from_Radio_Amateur
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-00.jpg

Later	on,	you	would	focus	on	antenna	choice:

A	wire	inside	the	antenna	hole	(also	said	a	wire	dipole	or	simple	dipole).
A	µFl	connector	https://shop.mchobby.be/product.php?id_product=1418	to	plug	antenna.
A	PCB	SMA	connector	https://shop.mchobby.be/product.php?id_product=1419	also	to	plug	other	kind	of	antenna.

The	cheapest	antenna	is	the	wire	antenna	(simple	dipole)	and	the	best	option	is	the	SMA	connector	(also	mode	heavy).

The	µFl	connector	https://shop.mchobby.be/product.php?id_product=1418	(also	named	uFl)	is	looking	to	this:

A	PCB	SMA	connector	https://shop.mchobby.be/product.php?id_product=1419	is	looking	to	this:

Ground	Station	-	Yagi	Antenna
While	reading	some	resources	on	the	QSO	magazine	https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html
(Magazine	from	Belgian	Radio	Amateur	Association	written	in	dutch	and	french),	we	did	discover	a	Yagi	Antenna	tuned
for	433Mhz.

Source:	QSO	Magazine	via	this	publication	https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html	-	click	to	enlarge

This	antenna	was	engineered	from	the	"Cheap	Yagi	https://df.mchobby.be/ballon-meteo/cheapyagi.pdf	"	(pdf),	issue	from	the	"Controlled
Impedance	'Cheap'	Antennas	https://www.wa5vjb.com/yagi-pdf/cheapyagi.pdf	"	article	written	by	Kent	Britain	WASVJB.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-Antenna.png
https://shop.mchobby.be/product.php?id_product=1418
https://shop.mchobby.be/product.php?id_product=1419
https://shop.mchobby.be/product.php?id_product=1418
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-uFL-connector.jpg
https://shop.mchobby.be/product.php?id_product=1419
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-RFM69HCW-TEST-SMA-connector.jpg
https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-10.png
https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html
https://df.mchobby.be/ballon-meteo/cheapyagi.pdf
https://www.wa5vjb.com/yagi-pdf/cheapyagi.pdf

A	simple	rule	of	three	can	be	used	to	adapt	the	antenna	to	other	frequencies	(the	antenna	was	already	adapted	from	a
432	Mhz	design).

6	or	11	elements

The	Yagi	antenna	showed	here	upper	does	have	6	elements.

From	a	deeper	read	of	the	QSO	magazines	series	https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html	,	we
learned	that	6	elements	Yagi	can	offer	a	gain	up	to	11.2	dBi.

It	seems	that	the	11	elements	Yagi	(see	original	document	https://df.mchobby.be/ballon-meteo/cheapyagi.pdf)	will	double	the	gain.
Whoaw!!!

About	Yagi	Antenna
Here	some	very	basic	information	about	Yagi	antenna.	It	brings	fundamental	concepts	that	you	will	deal	off	with	such
antenna.

Radiation	Pattern

The	radiation	pattern	is	the	direction	or	directions	where	the	signal	will	be	emitted	(or	received).

So	for	a	given	transmission	power,	a	directional	antenna	would	send	the	signal	further	than	an	hemisphere	antenna.
Indeed,	directional	antenna	would	concentrate	all	the	power	is	one	direction	where	as	hemisphere	antenna	would
spread	the	same	power	all	around.

The	Yagi	antenna	does	support	several	radiation	pattern	but	"Yagi"	is	often	used	in	place	of	"Directional	Yagi".

Isotropic	Antenna	:	radiate	the	same	in	all	the	direction.
Directional	Antenna	(or	Beam	Antenna)	:	radiate	most	of	its	power	in	one	or	more	direction.	This	increase	the
performances	in	the	direction	while	reducing	the	interference	coming	from	the	other	directions.
Omni	Directional	antenna	:	uniformly	radiates	the	power	in	one	plan.	With	a	directive	pattern	shape	in
perpendicular	plane.	This	antenna	radiates	equally	in	all	the	directions	and	have	some	angle	of	elevation	(dixit
elprocus.com	https://www.elprocus.com/design-of-yagi-uda-antenna/)
Hemispherical	antenna	:	radiates	one	half	of	the	hemisphere	(the	lower	or	the	upper	one)

Common	Design

The	antenna	lengths	and	spacing	are	depending	on	the	wavelength	to	capture.

Source:	design	of	Yagi	Uda	Antenna	https://www.elprocus.com/design-of-yagi-uda-antenna/

Directors	:	used	to	drive	the	signal	in	the	given	direction.	Those	directors	are	usually	shorter	than	driven	element
(about	5%).
Driven	element	:	is	the	element	that	capture	or	emit	the	signal.
Reflector	:	reflect	the	signal	toward	(or	coming	from)	the	driven	element.	The	reflector	is	larger	than	driven
element	(about	5%).

Because	of	the	antenna	design,	the	maximum	of	radiation	is	in	the	way	of	director.

https://arduino103.blogspot.com/2018/08/ballons-meteorologiques-tout-savoir-sur.html
https://df.mchobby.be/ballon-meteo/cheapyagi.pdf
https://www.elprocus.com/design-of-yagi-uda-antenna/
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-30.png
https://www.elprocus.com/design-of-yagi-uda-antenna/

Needed	Material

A	cheap	Yagi	antenna	could	be	realised	with	plastic	material	(or	wood)	and	some	very	tick	wire.

However,	the	standard	Yagy	Antenna	(and	the	best	ones)	are	made	with	aluminium	pipes.

Resource

A	closer	look	at	the	“black	magic”	of	antennas,	how	they	work,	what	is	essential,	and	how	to	test	them
https://youtu.be/J3PBL9oLPX8	(Youtube)
Very	pratical	and	affordable	video.	They	explain	the	power	lost	(or	gain)	in	the	antenna,	in	the	antenna	cable.
Yagi	Uda	Antenna	https://www.elprocus.com/design-of-yagi-uda-antenna/	(elprocus.com)
Advantages	&	disadvantages	of	YAGI	antenna	http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-YAGI-UDA-
Antenna.html	(rfwireless-world.com)
RFM69HCW	antenna	hookup	guide	https://learn.sparkfun.com/tutorials/rfm69hcw-hookup-guide/the-antenna	(Sparkfun,	also	thread	the
Dipole	antenna)
Explaining	the	Dipole	Radioation	pattern	https://youtu.be/8Eae3lqdtBY	(Youtube)	really	great	explanation.

CanSat	and	Antenna
As	specified	by	the	CanSat	settlement,	everything	should	be	contained	within	a	defined	volume	(the	Can).

So,	the	antenna	should	also	fit	into	the	volume.

However,	once	the	can	is	released	in	the	air,	your	project	can	deploy	an	antenna.

A	well	designed	antenna	for	sending	the	data	would	also	reduce	the	error	ratio	on	the	ground	station.

Quarter	WaveLength	Antenna

It	is	possible	to	create	a	small	antenna	made	of	a	simple	thread	of	Wire.

The	thickness	is	not	especially	critical	but	the	length	is	very	important.

The	ideal	Length	can	be	calculated	with	the	following	formula:

							c
L	=	-------
					4	x	f	

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-31.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-32.png
https://youtu.be/J3PBL9oLPX8
https://www.elprocus.com/design-of-yagi-uda-antenna/
http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-YAGI-UDA-Antenna.html
https://learn.sparkfun.com/tutorials/rfm69hcw-hookup-guide/the-antenna
https://youtu.be/8Eae3lqdtBY

Where:

c	:	is	the	light	speed	(in	m/s)
f	:	the	frequency	(in	hertz)	for	the	antenna
4	:	because	it's	a	quarter	length	antenna.

So	for	a	433	Mhz,	this	will	gives:

								3x10E8
L	=	--------------	=	0.1732m
					4	x	433*10E6	

So	an	antenna	length	of	17.32	cm.

Quarter	WaveLength	&	Polarization

When	using	such	antenna,	you	have	to	think	about	the	polarisation	of	your	signal,	Andeas	Spiess	shows	it	into	its
YouTube	video	'A	closer	look	at	the	“black	magic”	of	antennas,	how	they	work,	what	is	essential,	and	how	to	test
them	https://youtu.be/J3PBL9oLPX8	'.	If	you	miss	this	very	simple	point,	you	will	lost	lot	of	gain	and	loose	data.

Other	Antennas

We	encourage	you	to	search	antenna	with	better	performance,	the	Dipole	Antenna	https://learn.sparkfun.com/tutorials/rfm69hcw-
hookup-guide/the-antenna	is	one	of	best	choice	when	starting	(easy	to	do	with	good	performance).

Being	creative	may	offers	significant	advantages	in	antenna	design.	A	good	antenna	will	maximize	the	transmitted
power	to	the	ground	station.

https://youtu.be/J3PBL9oLPX8
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-13.png
https://learn.sparkfun.com/tutorials/rfm69hcw-hookup-guide/the-antenna

7	Rules	for	Radio	Antennas

Rule	#1:	Use	short,	high	quality	and	thick	antenna	cables.
Rule	#2:	An	SWR	below	2	is	acceptable	(less	than	11%	of	power	is	reflected	so	we	have	much	of	the	power
available	for	transmission).
Rule	#3:	Always	connect	an	antenna	to	the	sender	(otherwise	100%	of	signal	is	reflected,	which	may	kill	the
sender)
Rule	#4:	Keep	the	polarization	of	your	antennas	the	same	way.
Rule	#5:	The	more	dBi,	the	more	power	in	one	direction.
Rule	#6:	With	a	proper	antenna	setup,	the	distance	in	air	is	not	an	issue	if	we	have	a	line	of	sight.
Rule	#7:	Longer	is	not	always	better	for	antennas.	Smarter	is	better.

All	coming	from	the	famous	video	of	Andreas	Spiess	https://youtu.be/J3PBL9oLPX8	.

What	is	SWR?

SWR	(Standing	Wave	Radio)	measure	the	performance	of	signal	emitted	in	the	atmosphere.	This	value	is	available	on
the	antenna	technical	datasheet	or	can	be	evaluated	with	appropriate	measurement	device.

On	a	radio	board,	the	signal	is	generated	by	the	transceiver,	flowing	into	the	antenna	cable	and	finally	through	the
antenna	to	be	emitted	into	the	atmosphere.

Depending	on	the	antenna,	there	is	some	rejection	of	the	signal	back	to	the	transceiver.	This	means	than	a	portion	of
the	signal	is	not	emitted	to	the	air!	This	is	why	the	SWR	measurement	is	done.

A	poor	antenna	design	will	have	greater	SWR	(>2)	meaning	that	range	of	transmission	(or	reception)	will	be	reduced!
Very	bad	SWR	may	even	damage	the	transceiver!

The	worse	case	is	when	there	is	no	antenna,	in	this	case,	the	rejection	ratio	is	100%.	Nothing	is	emitted	to	the
atmosphere	and	all	the	signal	is	send	back	to	the	transceiver	(which	may	possibly	destroy	it!

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-12.png
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-16.png
https://youtu.be/J3PBL9oLPX8

SWR Description

1.0-
1.5

The	ideal	range!	an	SWR	under	1.5	is	really	great.	Getting	under	1.5	(closer	of	1)	is	possible	but	difficult,	you	may	consider
additionnal	tuning,	other	equipment	and	different	mounting	location.	However	dropping	under	1.5	(to	1.0)	would	not	increase	the
performance	in	significant	manner.

1.5-
1.9

This	range	will	provide	an	adequate/acceptable	performance.	Due	to	installations,	it's	sometime	impossible	to	get	an	SWR	under
that	range.	This	SWR	range	often	means	that	your	tuned	antenna	is	not	mounted	in	a	less-than-ideal	location.	To	troubleshoot,
search	for	paper	dealing	about	"problematic	antenna	mounting	locations".	Going	to	from	2.0	down	to	1.5	will	really	offer
noticeable	performance	improvement.

2.0-
2.4

While	not	good,	this	likely	won't	damage	your	radio	with	casual	use.	However,	you	should	definitely	try	to	improve	it	if	you	can.
SWR	in	this	range	is	usually	caused	by	a	poor	antenna	mounting	location	and/or	a	poor	choice	of	equipment	for	your	specific
vehicle.	To	troubleshoot,	you'll	likely	need	to	move	the	mounting	location	and/or	use	a	more	suitable	antenna.	It's	by	no	means	a
good	tuning	job,	but	will	function	if	you've	exhausted	all	other	troubleshooting	possibilities.

2.5-
2.9

Do	not	operate	radio	in	this	range.	SWR	in	this	range	offer	antenna	with	decreased	performance.	With	range	in	2.5	-	2.9	you
may	even	damage	the	transceiver	in	case	of	long	period	(or	frequent)	transmitting.	This	bad	SWR	range	may	be	caused	by	poor
mounting	location,	poor	equipment.	To	solve:	change	your	location	and/or	antenna.

3.0+
DO	NOT	OPERATE	RADIO	IN	THIS	RANGE.	SWR	in	this	range	would	have	bad	performance	and	this	will	probably	damage
the	radio	when	use.	You	SHOULD	NOT	transmit	with	a	SWR	levels	above	3.0.	This	is	almost	always	the	result	of	a	poor	ground	or
incorrectly	assembled	material	(it	may	also	indicates	a	faulty	coax,	faulty	antenna,	SWR	meter	not	properly	attached).

The	SWR	can	be	measured	with	appropriate	device,	it	is	maybe	time	to	find	a	Radio	Amateur	club	around	your	location.

Learn	more	about:

SWR	explained	on	telecomhall.com	http://www.telecomhall.com/what-is-vswr.aspx
SWR	on	wearecb.com	https://www.wearecb.com/what-is-swr.html	.

Getting	Help	from	Radio	Amateur
Designing	and	testing	an	antenna	for	long	distance	communication	is	an	intensive	work.

You	could	find	some	help	from	our	Radio	Amateurs	friends.

To	locate	a	Radio	Amateur	Club	http://map.mchobby.be	near	of	your	home	then	have	a	look	the	"Maker's	Maps"	http://map.mchobby.be
owned	at	MC	Hobby.

A	yellow	mark	indicates	the	Radio	Amateur	clubs.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-ANTENNA-14.png
http://www.telecomhall.com/what-is-vswr.aspx
https://www.wearecb.com/what-is-swr.html
http://map.mchobby.be/
http://map.mchobby.be/
http://map.mchobby.be/

Parachute

Sommaire
1	Introduction
2	Parachute	opening	&	tenseness
3	Fundamentals	parameters

3.1	Drag	Coefficient
3.2	Estimate	the	Drag	Coefficient

4	Flat	Circular	Parachute
5	Parachute	Design	@	NAROM
6	Parachute	Design	@	Esero	Luxembourg
7	Resources

Introduction
The	CanSat	use	a	parachute	to	slow	it	down	when	getting	back	to	the	earth.	Otherwise	the	CanSat	would	crash!

The	parachute	is	also	used	to	maintain	the	CanSat	in	the	proper	position	to	properly	orientate	the	antenna!	This	is
essential	to	receive	telemetry	data.

The	most	simple	parachutes	to	create	are:

the	"Flat	Shape"	Parachute
the	"Cross"	Parachute

Parachute	opening	&	tenseness
The	process	of	parachute	opening	and	air	flow	capturing	is	a	violent	process.	The	tenseness	on	the	fabric,	wire,	hook
may	be	really	impressive	at	the	opening.

So	you	need	to	select	strong	fibres	and	realise	strong	assemblies.

The	ideal	materials	are	those	used	for	human	parachute	(Nylon	Cord,	Ripstop	Nylon	https://en.wikipedia.org/wiki/Ripstop).

Fundamentals	parameters
The	followings	parameters	are	primary	values	to	use	when	designing	the	CanSat's	parachute.

Mass	:	between	300gr	and	350gr.
Velocity	:	between	8	m/s	and	11	m/s	(about	29	Km/H	and	40	Km/H).
Drag	Coefficient	:	the	drag	coefficient	https://en.wikipedia.org/wiki/Drag_coefficient	depends	on	the	parachute	shape	and	the
fluid	used	(Air	in	this	case).

Drag	Coefficient

Semi	Spherical	Parachute	:	1.5	(narom),	0.77	(in	the	table	below)
Cross	Shape	Parachute	:	0.8
Flat,	Hexagone	Parachute	:	0.8

file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Introduction
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Parachute_opening_.26_tenseness
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Fundamentals_parameters
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Drag_Coefficient
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Estimate_the_Drag_Coefficient
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Flat_Circular_Parachute
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Parachute_Design_.40_NAROM
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Parachute_Design_.40_Esero_Luxembourg
file:///home/domeu/python/compile_wiki_tuto/wiki-export/Eng-Cansat/Eng-Cansat.html#Resources
https://en.wikipedia.org/wiki/Ripstop
https://en.wikipedia.org/wiki/Drag_coefficient

Source:	Parachute	Size	Estimator	https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons

Estimate	the	Drag	Coefficient

You	can	make	a	drop	test	from	a	given	height	of	your	CanSat	with	the	parachute.

When	terminal	velocity	is	known	(measured),	you	can	deduce	the	Drag	Coefficient	from	the	estimated	velocity	in	free
chute	(if	the	CanSat	were	not	equipped	with	a	parachute).

Flat	Circular	Parachute

The	Flat	Parachutes	are	extremely	common	in	the	hobby	rocketry	fields.	Thanks	to	their	simple	design,	they	are	cheap
and	easy	to	manufacture.	They	also	offers	reliable	parachute.

The	trade-off	is	the	Draft	Coefficient	(Cd)	which	is	not	as	high	for	a	given	cloth	diameter.	It	is	hard	to	go	wrong	with	a
flat	circular	(or	flat	hexagonal)	parachute.

The	typical	drag	coefficients	range	goes	from	0.75	to	0.80.

You	may	also	find	some	informations	about	flat	parachute	on	this	NAROM	page	https://www.narom.no/undervisningsressurser/the-cansat-
book/the-primary-mission/parachute-design/flat-parachute-design/	.

https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-PARACHUTE-20.png
https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons
https://wiki.mchobby.be/index.php?title=Fichier:ENG-CANSAT-PARACHUTE-30.png
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/flat-parachute-design/

Parachute	Design	@	NAROM
The	NAROM	site	in	Norway	https://www.narom.no	did	publish	"The	CanSat	Book"	containing	lot	of	useful	information.

The	most	interesting	parts	concerns	the	Parachute	Design	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-
mission/parachute-design/	.

Parachute	Design	Calculations	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/parachute-design-
calculations/
Descent	Physics	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/descent-physics/
Semi-spherical	parachute	Design	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/semi-spherical-
parachute-design/
Cross	Parachute	Design	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/cross-parachute-design/
Flat	Parachute	Design	https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/flat-parachute-design/

Parachute	Design	@	Esero	Luxembourg
The	Esero	Luxembourg	http://www.cansat.lu	site	did	publish	ressources	for	cansat	contest.

Parachute	calculation	https://youtu.be/J-HmIxQ10ec?t=11107	YouTube	
Excellent	introduction	with	fundamental	concept	to	some	advance	parachute	calculation.	A	Great	ressource.

Resources
Parachute	Design	and	Construction	https://www.nakka-rocketry.net/paracon.html	by	Richard	Nakka
Parachute	Size	Estimator	tool	https://gallery.mailchimp.com/c4ab65df2b61279e33d7ee72b/files/HAB_Parachute_Size_Estimator_v1.0.xlsx	using
imperial	unit	system	(Launchwithus.org	https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons)
See	this	article	which	explains	how	to	use	it	https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons
.
The	Mathematics	of	Parachute	https://www.sunward1.com/imagespara/The%20Mathematics%20of%20Parachutes%28Rev2%29.pdf	(pdf).

https://www.narom.no/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/parachute-design-calculations/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/descent-physics/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/semi-spherical-parachute-design/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/cross-parachute-design/
https://www.narom.no/undervisningsressurser/the-cansat-book/the-primary-mission/parachute-design/flat-parachute-design/
http://www.cansat.lu/
https://youtu.be/J-HmIxQ10ec?t=11107
https://www.nakka-rocketry.net/paracon.html
https://gallery.mailchimp.com/c4ab65df2b61279e33d7ee72b/files/HAB_Parachute_Size_Estimator_v1.0.xlsx
https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons
https://www.launchwithus.org/lwu-blog/2016/02/17/parachute-size-estimator-for-high-altitude-balloons
https://www.sunward1.com/imagespara/The%20Mathematics%20of%20Parachutes%28Rev2%29.pdf

Shopping
Need	to	refill	your	Cansat	kit	with	some	items	?

Here	is	the	complete	product	list	of	boards	enclosed	inside	the	kit.

	 Description Quantité
Feather	M0	Express New	Arduino	M0	compatible	on	a

standard	platform	for	embedded
project.	Also	compatible	with
CircuitPython.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=1119

1

Feather	Stacking	Headers Plug	your	feather	or	prototype
wing	on	breadboard	and	still
having	a	female	connector	under
the	hand.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=832

1

Feather	Prototyping	Wing Prototyping	board	for	feather
platform.
Create	your	own	extension	board
(wing)	by	soldering	connectors
and	components.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=861

1

USB	A/microB	1m	cable Can	be	used	to	plug	your	feather
on	a	computer	to	program	it	or	to
reload	the	Lipo.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=145

1

BMP280	Barometric	pressure
sensor

Easily	evaluate	pressure,	altitude
and	temperature.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=1118

1

TMP36	–	analog	temperature
sensor

Transform	the	sensor	voltage	read
on	analog	input	into	an	easy-to-
read	temperature.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=82

1

https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS.png
http://shop.mchobby.be/product.php?id_product=1119
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-STACK-HEAD.png
http://shop.mchobby.be/product.php?id_product=832
https://wiki.mchobby.be/index.php?title=Fichier:FEATHER-M0-EXPRESS.png
http://shop.mchobby.be/product.php?id_product=861
https://wiki.mchobby.be/index.php?title=Fichier:CABLE-USB-MICRO.png
http://shop.mchobby.be/product.php?id_product=145
https://wiki.mchobby.be/index.php?title=Fichier:BMP280v2.png
http://shop.mchobby.be/product.php?id_product=1118
http://shop.mchobby.be/product.php?id_product=82

RFM69HCW	Transceiver	Radio Transport	data	over	long	distance
with	packet	radio.
One	breakout	act	as	emitter,	the
second	one	as	receiver.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=1390

2

Lithium	Polymer	Battery	0.8	Ah Transform	the	Feather	into	an
autonomous	plateform	with	this
800mAh	Lipo.
Less	power,	smaller	and	lighter.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=1302

1

Lithium	Polymer	Battery	1.3	Ah Transform	the	Feather	into	an
autonomous	plateform	with	this
1300mAh	Lipo.
More	power	but	bigger	and	bit
heavier.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=277

1

Half	Size	Breadboard Solderless	breadboard	are	used
for	fast	prototyping.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=53

1

Multi-functional	breadboard
wires

Set	of	wires	with	plug	that	can	be
modified	from	female	to	male.
disponible	ici	chez	MCHobby
http://shop.mchobby.be/product.php?id_product=82

1

https://wiki.mchobby.be/index.php?title=Fichier:TMP-36.png
https://wiki.mchobby.be/index.php?title=Fichier:RFM69HCW-433Mhz-BRK.png
http://shop.mchobby.be/product.php?id_product=1390
https://wiki.mchobby.be/index.php?title=Fichier:ACC-LIPO-800mAh.png
http://shop.mchobby.be/product.php?id_product=1302
https://wiki.mchobby.be/index.php?title=Fichier:ACC-LIPO-1.3Ah.png
http://shop.mchobby.be/product.php?id_product=277
https://wiki.mchobby.be/index.php?title=Fichier:BB-DEMI.jpg
http://shop.mchobby.be/product.php?id_product=53
https://wiki.mchobby.be/index.php?title=Fichier:FILS-BB-FFASSOR-v2.png
http://shop.mchobby.be/product.php?id_product=82

